
I AD-A247 268 TASK: UT40
m i l 1, iii ii 111 CDRL: 4041

11,11022 Nov 91

UT40 - Asset Library Open (J
Architecture Framework

I (ALOAF) Version 0.8- DRAFT

=" Informal Technical Data

I
1

DTIC
ELECTE

I MAR 13 1992

0

i

STARS-TC-04041/001/00

22 November 1991

-This document has been approved

for public release and sale; its
'-tubution is unlimite&

5 92 3 13 9O '92-06597
"IiIII~IIII lt

Form ApprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-0188
Piic reoor ,nc murclen 'or tmr zlection of -nfrati, 0 s estimated .: aeraqe ' " u r oer esorse. inciucing trhe time for reviewing instructions, searc,:rrc e~stinc data souJrces.
gathefinq and maintaining the data needed. and conioteting and revie-a the CCcilect on of information Sena comments re~ardino this ourdlen estimate or ann)ther asoect 0? 15i5
collectionc informatiCoc inciulig sggestions for reaucinoi thi ourdlen !_AraShlCgton -ieadduarters Services. D),rectorate for intormation Oicerations and Reoris. 1215)etierson
Danrs HWo ay, suite 12C4 Arlington. /A 22202-4302, and to Tma- O - of M'aaqemm',t and Budget Paverwnork Reduction Project (0704-0188). Washncton, _-C -^503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3.REPORT TYPE AND DATES COVERED
22 November 99 Informal Technical Data

4. TITLE AND SUBTITLE 15. FUNDING NUMBERS
Asset Library open
Architecture FrameworkI
ALOAF Version 0.8

6. AUTHOR(S) Fl 9628-88-D-0031

Paramax Corporation

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Paramax Corporation
12010 Sunrise Valley Drive STARS-TC-04041 /001 /00
Reston, VA 22091

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/I MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division 04041

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION. AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution "A"l This document has been approved
for public release and sale; its
distzibution is unlimited.

13. ABSTRACT (Maximum 200 words)

The STARS (Software Technology for Adaptable, Reliable Systems) Asset Library Open Archi-
tecture Framework (ALOAF) addresses the exchange of reusable assets among diverse libraries,
and the definition of an asset library platform upon which portable reuse tools may be constructed.f
Asset interchange and asset service interfaces are critical elements in achieving a broader objective- -
asset libraries which interoperate to such an extent that the boundaries between indjii a- ies
become invisible to the end user. In general terms, this is the STARS vision of 'seaniless'iibrary
interoperation. As the STARS vision of seamless interoperation matures, the ALOAF will be
updated and expanded to address additional, more advanced requirements.

14. SUBJECT TERMS 15. NUMBER OF PAGES

ALOAF 76
16. PRICE CODE

17 SECURITY CLASSIFICATION i8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unicassified Iunclassified I unclassified SAR

TASK: UT40CDRL: 04041

22 November 91

INFORMAL TECHNICAL REPORT

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Asset Library Open Architecture Framework
Version 0.8 - DRAFT

STARS-TC-04041/001/00

Publication No. GR-7670-1317(NP)
22 November 91

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0008

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

The Boeing Company, IBM, Unisys Defense Systems, Inc.,
Defense & Space Group, Federal Sector Division, Tactical Systems Division,
P.O. Box 3999, MS 87-37 800 N. Frederick Pike, 12010 Sunrise Valley Drive,
Seattle, WA 98124-2499 Gaithersburg, MD 20879 Reston, VA 22091

I
TASK: UT40

CDRL: 04041
22 November 91

I
m

Data ID: STARS-TC-04041/001/00

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with the
DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems (STARS)
program, is approved for release under Distribution "A" of the Scientific and Technical Information
Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated. Sponsored by
the U.S. Defense Advanced Research Projects Agency (DARPA) under contract F19628-88-D-0031,
the STARS program is supported by the military services, SEI, and MITRE, with the U.S. Air
Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated under Dis-
tribution "A" and without fee is hereby granted, provided that this notice appears in each whole
or partial copy. This document retains Contractor indemnification to The Government regard-
ing copyrights pursuant to the above referenced STARS contract. The Government disclaims all
responsibility against liability, including costs and expenses for violation of proprietary rights, or
copyrights arising out of the creation or use of this document.

In addition, the Government and its contractors disclaim all warranties with regard to this doc-
ument, including all implied warranties of merchantability and fitness, and in no event shall the
Government or its contractors be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from the loss of use, data, or profits, whether in action of con-
tract, negligence or other tortious action, arising in connection with the use or performance of this
document. Accession For

I NTIS GRA&I5 DTIr1 TAB

Just~ C' cat I)n

Di t rib,t tonL
Availabilitv Codes

iAvall and/or

Dist Special3i

I TASK: UT40
CDRL: 04041

22 November 91

INFORMAL TECHNICAL REPORT
Asset Library Open Architecture Framework
Version 0.8 - DRAFT

I
I

S Approvals:

IL/
Boeing Reuse Technical Lead Margaret Davis Date

IBM Reuse Technical Lead Brian Bulat Date

Unisys Reuse Technical Lead ichard Creps Date

I

(Signatures on File)

I
TASK: UT40

CDRL: 04041
22 November 91

INFORMAL TECHNICAL REPORT
Asset Library Open Architecture Framework
Version 0.8 - DRAFT

I
Change Record:

Data ID Description of Change Date Approca!
STARS-TC-04041/001/01 Updated: Specifies additional 22 November 1991 on file

services.
STARS-SC-03727/001/01 Reissued: Electronic represen- 05 September 1991 on file

tation enhanced for improved
printability; corrected minor
formatting discrepancies. on ______

STARS-SC-03727/001/00 Original Issue 21 August 1991 on file

I
1
I
I
I
i

22 November 91 STARS-TC-04041 /001/00

I Contents

IPart I The ALOAF Concept 1

1 Introduction II1.1 Asset Library Overview. 1
1.2 Objectives. 3
1.3 Evolution 4

1.4 Document Outline. 4

2 Background 5I2.1 STARS Reuse. 5
2.2 Relationship to SEE....*, *6
2.3 Standards Activities 7

3 Assumptions 7
3.1 DoD Needs. 8I3.2 Asset Library Technology Standardization. 8
3.3 Assets 8
3.4 Asset Library Data 8
3.5 Asset Library Systems 8
3.6 Library User Needs 9

14 Aims 9
4.1, Aims for the ALOAF Library Model. 9

4.1.1 Description and Comparison 9I4.1.2 Evolution of Standards 9
4.1.3 Integration and Interoperability 10
4.1.4 Degree of Generality. 10I4.1.5 Technique. 10

4.2 Aims for the ALOAF Specifications. 10
4.2.1 Conformance with Standards. 11I4.2.2 Asset Interchange. 11
4.2.3 Common Data Model 11
4.2.4 Asset Library Service Categories 11I4.2.5 Language Independent Specification. 11
4.2.6 Ada Programmatic Interfaces 12
4.2.7 ALOAF Conformance Criteria. 12

Part 11 The ALOAF Library Model 13

5 Data Modeling Concepts 13
5.1 Data Modeling Layers 13I5.2 Relationship to Asset Libraries. 14
5.3 Relationship To STARS ALOAF. 15

6 Service Model 16

3 Page ii

22 November 91 STARS-TC-0404 1/001/00

16.1 ALOAF Service Categories 18
6.1.1 Library Management Services 193,6.1.2 Data Model Services. 19
6.1.3 Asset Description Services. 19
6.1.4 Session Services. 1956.1.5 Query Services. 20
6.1.6 Asset Location Services. 20
6.1.7 Metrics Services 2036.1.8 Access Control Services. 20

6.2 Assumed SEE Services. 20

IPart III The ALOAF Specifications 23

7 Data Modeling and Asset Interchange 23
7.1 The Meta-Model. 24

7.1.1 The Core Meta-Model 24
7.1.2 Meta-Model Extensions. 27I7.2 The Common Data Model for Asset Interchange. 27
7.2.1 The Representation of the Common Data Model 28
7.2.2 The Model 30

7.2.3 Rationale for the Common Data Model. 38
7.3 Evaluation of Standards 41

7.3.1 Summary of the Data Interchange Capabilities of ANSI IRDS. 41I7.3.2 Summary of the CASE Data Interchange Format. 42
7.3.3 Summary of IEEE P1175 Support for Data Interchange 44
7.3.4 Other Standards 45

7.3.5 Initial Conclusions. 45

8 Services 45I8.1 Library Management Services 46
8.2 Data Model Services. 48

8.2.1 Model Definition Services. 50

8.2.2 Object Class Services 51
8.2.3 Attribute Services. 54
8.2.4 Relationship Services. 55

8.3 Asset Description Services 56
8.3.1 Object Services. 56
8.3.2 Link Services. 60

8.4 Session Services 60
8.5 Query Services. 61
8.6 Asset Location Services 61

8.7 Metrics Services 62
8.8 Access Control Services 63

19 Conformance 63
9.1 Conformance Dimensions. 64£9.2 ALOAF Conformance Plans. 65

3 Page iii

22 November 91 STARS-TC-04041/001/00

10 References 66

Part IV Appendices 67

A Glossary 67

B Acronyms 71

C Scenarios 73

D Asset Interchange Language Specification 74

I E Ada Bindings for ALOAF Services 77

I
I
I
I
I
I
I

I
I
I
I

i Page iv

22 November 91 STARS-TC-04041 /001/00

List of Figures

1 Asset Library 2

2 Data Modeling Layers 13

3 ERA Data Model 14

4 ERA Example Data 15

5 ECMA Toaster Model 17

6 Relationships Among SEE and ALOAF Services 18

7 The Common Data Model .. 30

Page v

22 Nove, Ter 91 STARS-TC-0404 1/001/00

Prologue

This is the second draft, version 0.8, of the Asset Library Open Architecture Framework (ALOAF).
This document supersedes the first draft, version 0.5, released in August 1991. Version 1.0 of the
ALOAF will be available in February 1992.

This second draft version includes a specification of the asset library meta-model that underlies the
framework services. It also contains a significantly expanded and reorganized framework services
section. The ALOAF document is also being re-examined in light of the recent NIST and ECMA
work on reference models for CASE frameworks. Revisions for version 1.0 are expected to reflect
this work.

The ALOAF is a "living" document. The document will be revised as necessary to reflect the
current status of and consensus about open architecture frameworks for asset libraries. These
revisions may include, but not be limited to, enhancement of the current concepts, addition of
new material, deletion of existing material, and even contradiction of premises stated in previous
versions. Knowledge gathered through prototyping efforts and experiments on the gamut of issues
associated with reuse, along with feedback from internal and external review will serve as a basis
for modification and extension of this document.

Page Ai

22 November 91 STARS-TC-04041/001/00

- Part I

I The ALOAF Concept

-- 1 Introduction

5 A reuse-based approach to software engineering places the emphasis on the reuse and integration of
existing software components and systems, rather than the creation of software components from
scratch. To support this approach, automated reuse libraries have been and are being created.

The concept of reuse of components is applicable to reuse libraries themselves. Reuse libraries
consist of a set of components that are suitable candidates for reuse and sharing. These include
the components that make up art automated library system and reuse library tools.

The STARS (Software Technology for Adaptable, Reliable Systems) Asset Library Open Archi-3 tecture Framework (ALOAF) addresses the exchange of reusable assets among diverse libraries,
and the definition of an asset library platform upon which portable reuse tools may be constructed.
Asset interchange and asset service interfaces are critical elements in achieving a broader objective-
asset libraries which interoperate to such an extent that the boundaries between individual libraries
become invisible to the end user. In general terms, this is the STARS vision of "seamless" library
interoperation. As the STARS vision of seamless interoperation matures, the ALOAF will be
updated and expanded to address additional, more advanced requirements.

1.1 Asset Library Overview

An Asset Library, as depicted in Figure 1, is a means for organizing, collecting, and managing a
set of engineering components, or Assets. An Asset Library consists of the Asset Library Data and
the Asset Library System.

The Asset Library Data consists of the Assets themselves, as well as the descriptive and organiza-
tional information about the Assets, collectively referred to as the Asset Catalog in Figure 1. The
Asset Catalog, in turn, contains the descriptive information (Asset Descriptions) associated with
the Assets, and the structural organization (Library Data Model) of the Asset Descriptions.

The Asset Library System provides a set of library-oriented mechanisms which define, manipulate,I and operate upon the Asset Library Data. The Asset Library Framework and Library Tools make
up the Asset Library System. The Asset Library Framework provides the basic library-oriented
operations, the Framework Services, that are needed to create, manipulate, and manage the Asset
Catalog, in accordance with a data organizational structure defined by the Meta-Model. The Library
Tools provide the end-user or other tools a higher level, organized collection of operations. These
tools may operate on the Asset Catalog and/or the Assets.

The area of focus of the ALOAF includes the Asset Library Framework and the Asset Catalog.
An asset library open architecture framework specifies a public, non-proprietary blueprint, against
which asset library systems may be implemented and reuse-based library tools may constructed.

Page 1

22 November 91 STARS-TC-04041/OO1/oO

I Asset Library System

Library Tools

17 I
Framework serygos

Asset Library Mate-Model

Framework

10
AseIU1

SAsetLibaryDa A sst

I L~j= Area of ALOAF focus

I Figure 1: Asset Library

Page 2

I
22 November 91 STARS-TC-04041/001/00

E 1.2 Objectives

3 The primary objectives of the STARS ALOAF are to facilitate the interchange of assets between
asset libraries, and facilitate the construction of reuse tools that are portable between asset li-
braries. The asset-interchange objective focuses the STARS ALOAF upon the information needed
to systematically organize and describe assets stored within an asset library. The ALOAF addresses
the interchange of assets and their associated asset descriptions and model information through
the ALOAF Data Modeling and Asset Interchange Specification. The portable-reuse-tools objec-
tive focuses the STARS ALOAF upon the asset library services and standard interfaces needed by
reuse-based library tools. The ability to create portable reuse-based library tools is addressed by
the ALOAF Service Model along with their ALOAF Programmatic Interfaces.

ALOAF Data Modeling Concepts and Asset Interchange Specification

An asset library can contain a large amount of data. This data may include the library's assets,
descriptions or related information about the assets, as well as the organization of the assets and the
manner in which the organization is described. The ALOAF Data Modeling Concepts address all
of these constituent pieces of data via three layers: a data layer, a model layer, and the meta-model
layer. Data modeling is necessary in order to specify a common asset interchange mechanism, as
well as a uniform set of services (the ALOAF Service Model) which operates upon the data.

The ALOAF Asset Interchange Specification supports the interchange of assets and asset descrip-
tions among diverse asset libraries. The emphases within asset interchange are upon the exchange
of the asset descriptions and their organizational representation, and upon an open, non-restrictive

I interchange mechanism.

The STARS ALOAF Asset Interchange Specification provides a standard technique for representing
library data models, a format for library data models, and a format for asset library data. The
Asset Interchange Specification is not dependent upon any particular library data model and may
be used to represent the data models and data of a wide range of asset libraries. The Asset
Interchange Specification includes a Common Data Model. The Common Data Model describes a
basic data model that allows asset libraries to interchange a common subset of asset descriptions.
The Common Data Model encompasses information that is typically maintained by asset libraries.

ALOAF Service Model

The ALOAF Service Model describes a collection of services that asset library implementors are
encouraged to provide to support interoperability among geographically dispersed, heterogeneous
asset libraries and to support portability of tools across libraries. The Service Model categorizes
framework services and describes the interrelationship between categories and between individual
services within and across category boundaries. Individual services are described in terms of ser-
vice protocol descriptions that are independent of implementation language. The service protocols
consist of abstract functional interfaces and data exchange specifications intended to meet require-
ments common to all language bindings to the ALOAF services. STARS asset libraries will be
required to conform to the ALOAF. Conformance descriptions and criteria for asset libraries will

Page 3

22 November 91 STARS-TC-04041/001/00

be specified as an extension of the ALOAF Service Model.

ALOAF Programmatic Interface

The ALOAF Programmatic Interface comprises a set of Ada package specifications defining inter-
faces to the services described in the ALOAF Service Model. In particular, the Ada specifications
provide an Ada instantiation of the implementation-language-independent service protocol descrip-
tions articulated in the Service Model. The Ada programmatic interface is only one of many
potential language-specific instantiations of the service protocols and is provided by STARS as a
recommended Ada standard interface. However, ALOAF conformance is not predicated on provi-
sion of ALOAF services through Ada interfaces.

1.3 Evolution

STARS has invested substantial effort in the incorporation of reuse methods and technologies into
the mainstream of software engineering. Projects concentrating on the advancement of software
reuse have demonstrated successful results over the past five years in the STARS Foundations,
STARS Prime, and other STARS programs.

The concept formulation of an ALOAF started in the fall of 1990, and came to realization several
months later. The ALOAF effort began in earnest in January 1991, with participation from all
three STARS Prime participants-Boeing, IBM, and Unisys. This ALOAF is the result of the
cooperation and confluence of reuse efforts of the three Primes, their subcontractors, and otherISTARS program participants.

The initial ALOAF addresses the reuse goals of STARS asset libraries with both short term and long
term solutions. The short term solutions drive toward the immediate sharing of assets between the
many diverse reuse libraries that are coming on-line in increasing numbers. The long term solutions
strive for the far reaching goals of interoperable heterogeneous asset libraries, able to share assets
and asset descriptions, as well as the portability of a broad and rich set of library tools which
operate within asset library systems.

The ALOAF document will track the development and expansion of reuse within the software
community. The framework to support asset interchange and tool portability will be revised as
necessary to reflect the state of the practice, while tracking advances in the state of the art.

I
1.4 Document Outline

I The remainder of this document describes the STARS ALOAF. Sections 2 through 4 of Part I, The
ALOAF Concept, briefly describe the background of the STARS ALOAF, the assumptions upon
which the STARS ALOAF is based, and the high level aims of the STARS ALOAF.

Part II, The ALOAF Library Model, is composed of Sections 5 and 6. Section 5 introduces the
I data modeling concepts of the ALOAF and Section 6 describes the ALOAF service model.

IPage 4

22 November 91 STARS-TC-04041/001/00

Part III, The ALOAF Specifications, is composed of Sections 7 through 10. The ALOAF data
modeling along with the asset interchange specifications are described in Section 7. Section 83 provides a detailed description of the set of ALOAF services, followed by a discussion of criteria for
conformance with the ALOAF in Section 9. Section 10 concludes the main body of the ALOAF
with the references for this document.

I Part IV consists of the appendices. Appendix A is a glossary of ALOAF related terms, and
Appendix B defines the acronyms frequently used within this document. Appendix C provides a
sample scenario(s) which illustrates the usage of the ALOAF services and ALOAF asset interchange.
Appendix D defines the asset interchange language, and Appendix E specifies the Ada binding to
the language independent specifications of the ALOAF services.

I 2 Background

The ability to make effective use of previously created assets, be they software components, design
artifacts, textual documents, etc., is viewed as a critical factor in the reduction of application
development and maintenance costs, along with improved reliability. Many efforts both within and
external to the STARS program have addressed the development and establishment of asset libraries
(also referred to as reuse repositories, software depositories, ...). Each of these reuse projects has
its respective merits and unique qualities. The ALOAF does not seek to stifle the creativity nor
inventiveness being exhibited in the development of new reuse methods, environments, and tools.
Rather, the purpose of the ALOAF is to allow reuse projects to benefit cooperatively from each
other's work. Examples of such cooperative benefit are:

I Assets stored within one asset library may be interchanged with a completely different asset
library, with descriptive asset information being exchanged as well. This allows diverse,
heterogeneous asset libraries to share assets, enabling the construction of applications which
may make use of the best and newest components that are available.

A reuse tool created for one asset library system may be easily ported to another asset library
system when the reuse tool and the asset library systems conform to the ALOAF service model
interface. This allows asset library systems to be easily enhanced with additional reuse-basedp, tools.

Thus, reuse technology, methods, and assets as a whole may rapidly expand and facilitate a shift5to reuse-based development and engineering.

I- 2.1 STARS Reuse

Reuse, along with software engineering environments and processes, is one of the primary software3 technical areas being addressed within the STARS program. The vision of the STARS program
[STA91b] is that "Software-intensive system development will evolve to a process-driven, domain-
specific reuse-based, technology-supported paradigm." The element of the STARS vision that5 explicitly applies to the ALOAF is domain-specific reuse-based. Under this envisioned paradigm,

3Page 5

22 November 91 STARS-TC-04041/001/00

applications will be built using a component based approach, rather than constructing them a line
at a time. Reusable components along with components extracted from existing systems will be
assembled into an application. And the components used in the application construction win be
based on domain-specific architectures and open interface standards.

In order to support DoD needs, a key STARS technology objective is the construction of engineering
environments from commercially available environment frameworks and tools. Asset library systems
contain elements of both reuse frameworks and reuse tools. The desire within STARS is the
construction of modular reuse tools and frameworks that conform with an open architecture, hence
the formulation of the asset library open architecture framework. Environment assemblers may then
pick and choose from a variety of commercial-off-the-shelf or company-proprietary tools and systems
that conform to the STARS ALOAF, with the knowledge that all of these ALOAF-conformant
components will interoperate and be plug-compatible. The resultant engineering environments are
standards-driven and standards-based systems, which are tailorable, adaptable, and reliable.

The ALOAF focuses on the needs of STARS asset libraries, as well as other DoD-related asset/reuse
systems with which STARS asset libraries will interoperate. This document is based upon the past,
current, and near-term anticipated work related to the asset library systems of the STARS program.
It was beyond the scope of the initial work of the ALOAF to address and consider all reuse issues
associated with every existing and potential asset/reuse library. In future work, the scope of the
ALOAF will be broadened to encompass additional relevant and appropriate asset/reuse libraries,
based upon the levels of interest demonstrated by those associated with those reuse libraries.

Other STARS, reuse-related activities include the STARS Reuse Concept of Operations and STARS'
participation in the Reuse Library Interoperability Group (RIG). The STARS Reuse Concept of
Operations [STA91a] articulates STARS concepts and expectations with respect to reuse of software
related assets across system and software life cycles. Specifically, the document communicates the
joint STARS perspective on such topics as the reuse vision, the goals for reuse, and reuse processes.
The ALOAF is consistent with and fosters the realization of these joint STARS perspectives put
forth within the Concept of Operations. The purpose of the RIG is to facilitate the interoper-
ability of government-sponsored software reuse libraries [RIG91]. As STARS is a member of the
RIG, relevant portions of the ALOAF will be put forward as suitable candidates for consensual3 standardization within the RIG.

P 2.2 Relationship to SEE

An asset library system is one of many subsystems that may be part of a computer-aided software5 engineering (CASE) environment. As a subsystem within a CASE environment, the facilities
provided by an asset library system should be consistent with the reference model defined for
CASE environment frameworks. The ECMA (European Computer Manufacturers Association)
has defined a reference model for CASE environment frameworks [Ear90], and the ALOAF has
adapted that model as the basis for part of its specification. The ALOAF differs from the ECMA
reference model for CASE environment frameworks in three important ways:

a. The ALOAF addresses asset library frameworks rather than the broader scope of CASE
environment frameworks.

Page 6

22 November 91 STARS-TC-04041/001 /00

b. The ALOAF addresses both asset library framework services and asset library data.

c. The ALOAF contains not only a model for asset library services and data, but also specific
STARS specifications for providing those services and describing that data.

The ALOAF supplements a Software Engineering Environment (SEE) in the area of asset libraries
and reuse services. The ALOAF service model defines the basic reuse capabilities needed within
asset library systems. Many of these reuse functions are intrinsic to asset libraries and in some cases
are strongly interrelated with object management services. The ALOAF services are a layer above
the SEE services when viewed within a SEE context, thus providing value-added, reuse-specific
capabilities. The STARS ALOAF has been constructed such that asset library systems may utilize
those facilities that are provided by a software engineering environment. These facilities include,
but are not limited to, a user interface system, an object management system, and data transport
services.

A STARS SEE is a possible underlying substrate upon which an ALOAF-compliant asset library
system may be constructed. Within the STARS program, there is a high degree of interest in
the construction of just such an asset library system. However, the ALOAF's broader goal is to
address asset library frameworks for systems that are outside of STARS as well. In order to make
the ALOAF a reasonable candidate for standardization within the broader reuse community, the
needs of library developers outside of STARS must be taken into account. Not all library developers
may have STARS SEEs at their disposal, but may wish to interoperate with other libraries and
reuse tools. Thus, the existence of a STARS SEE is not a necessary condition within the ALOAF.

2.3 Standards Activities

One aspect of an open system is the adherence to and conformance with standards relevant to
the technical application domain. A goal of the Asset Library Open Architecture Framework is
the adoption of existing and/or emerging standards that are relevant to asset library systems.
Standards activities that are relevant to the goals of the ALOAF are currently being tracked and
analyzed. Those standards activities that have direct bearing or possible secondary effects on the
goals of the ALOAF will be seriously considered for adoption and incorporation into the ALOAF.
It is not the intent of this document to duplicate or reinvent work that has already been completed
or is in progress.

The specification and promulgation of new and emerging standards is just as important as, if not
more important than, the conformance to standards. Reuse technology is one area in which there
are relatively few existing standards. A primary purpose of the ALOAF is the development and
shaping of future reuse-related standards. A role of the ALOAF is to serve as initiator and catalyst
in building and shaping consensus on reuse technology standards among asset library developers.

3 Assumptions

This section identifies various kinds of assumptions that have been made in establishing the re-
quirements for the ALOAF and in the development of the ALOAF. We expect that these core

Page 7

I
22 November 91 STARS-TC-04041/001/00

assiimptions will increase in number and change as we discover the unstated assumptions that have
been made, and as the level of detail of the ALOAF increases. This section is organized by topics
about which assumptions have been made.

I 3.1 DoD Needs

The DoD will require reuse-based software development and maintenance to achieve the productiv-
ity and quality that are needed in the 1990s. DoD programs will involve multiple, geographically
distributed organizations using heterogeneous software engineering environments. Reusable assets
must be shared among these organizations.

1 3.2 Asset Library Technology Standardization

The asset library technology to support DoD needs is immature. Several reuse library mechanisms
have been independently developed. There has been little effort thus far to standardize any aspect
of reuse libraries or of asset exchange among libraries.

I 3.3 Assets

The reusable assets assumed to be in asset libraries include not only the software components most
commonly associated with reuse, but also such additional kinds of information as the following:

* Reusable forms of other software products; e.g., requirements specifications, architectures,
designs, test procedures

* Application domain knowledge; e.g., models, data dictionaries, algorithms

* Process definitions; e.g., for managing asset libraries, for developing application systems

" * Rationale; e.g., for the inclusion of features, services, objects, and/or algorithms in a system;
for the selection of one architecture or design over another.

3.4 Asset Library Data

Libraries of reusable assets are described by a library data model. It is assumed that not all libraries
will have the same data models. Data models may change over time.

3.5 Asset Library Systems

Asset libraries are managed and accessed by asset library systems. The library system includes a
basic set of capabilities to create and manipulate library data models and asset descriptions. The
asset library system also includes other capabilities to support the management and use of the

Page 8

22 November 91 STARS-TC-04041/001/00

library. For example, it might include capabilities that support the presentation of information
to a user, the use of assets to compose software systems, the browsing of an asset library, or the
exchange of assets among libraries.

3.6 Library User Needs

It is assumed that an asset library user searches for various kinds of reusable assets to support some
software system life cycle activity. The user needs access to multiple libraries in order to maximizo
the amount and effectiveness of reuse. The ideal is for the user to use a single interface to interact
with all libraries and be unaware of whether or not an asset comes from a local or remote library
and of the particulars of the user interface or of the data model associated with the originating
library.

4 Aims

The purpose of this section is to describe and provide rationale for the main aims of this document.
It is patterned after and adopts some portions of section 1.4 "Aims of the Reference Model" found
in the ECMA Reference Model document [Ear90]. Section 4.1 describes the aims for the library
model (Part II) portion of the document. Section 4.2 describes the aims for the specifications
portion of the document (Part III).

4.1 Aims for the ALOAF Library Model

4.1.1 Description and Comparison

Aim: The ALOAF library model will be suitable for use in describing, comparing and contrasting
existing and proposed asset library frameworks or systems.

Rationale: The area of asset library frameworks/asset library systems is immature. Asset library
frameworks do not exist today; some asset library systems do exist. The area is just be-
ginning to develop basic premises and terminology. Much effort could be wasted through
misunderstandings and misinterpretations when different groups meet to discuss asset library
problems or proposals. A major contribution of the ALOAF can be provision of a vehicle to
facilitate effective communication about asset library frameworks and systems.

4.1.2 Evolution of Standards

Aim: The ALOAF will provide for the smooth and coordinated evolution of future standards,
in particular to ensure that the early standards are developed in such a way that further
standards may easily achieve alignment in the sense of upward compatibility.

Rationale: A smooth transition to the widespread use of asset libraries will rely on users being
able to continue to use their existing techniques and organizations in conjunction with an asset

Page 9

I
22 November 91 STARS-TC-04041/001/00

1 library framework that will provide more automation and tool support. System developers
should be able to see that the standards that they invest in today win not be obsolete3 tomorrow.

4.1.3 Integration and Interoperability

Aim: The ALOAF will address interoperability and integration of reuse tools.

I Rationale: The wide range of tool capabilities required to support various organizations and
applications of reusable assets may not be obtainable from a single source. Standards provide3a way for asset library users to buy facilities that meet their requirements from various
vendors.

Standards will be very useful in enabling tools to be ported to and to interoperate over,3 different types of hardware.

3 4.1.4 Degree of Generality

Aim: The ALOAF will be usable to describe a wide range of asset library framework designs, but3 will also be usable to define points at which useful standards can be defined.

Rationale: The ALOAF library model could be very abstract; but that would make it difficult to
define corresponding standards. The model could prescribe a single design; but that would
lack generality and defeat the aim of providing a vehicle for communication about various
asset library frameworks.I

4.1.5 Technique

3 Aim: The ALOAF will be applicable to asset library systems irrespective of implementation tech-
niques, reuse-based software development techniques, or library data modeling techniques.

3 Rationale: The ALOAF should recognize that there are many approaches to reuse-based software
development and to asset library data modeling.

The ALOAF should not be unduly restricted by existing library systems. There is limited
experience in their use to support software development and thus little evidence that their
services and designs are the most appropriate. Existing systems were not developed to support
seamless access to diverse libraries. However, existing products and results of research projects
provide a valuable body of knowledge applicable to the ALOAF.

3 4.2 Aims for the ALOAF Specifications

This subsection identifies the specific aims for the parts of this document that identify the STARS
specifications for asset library interchange and for asset library services (Part III).

I
3 Page 10

22 November 91 STARS-TC-04041/001/00

-- 4.2.1 Conformance with Standards

Aim: The ALOAF will be consistent with work undertaken by other organizations working toward
standardization related to reuse and amenable to adoption by a larger community.

Rationale: The STARS program is providing technology to be used in the development of DoD
software systems. The technology can be commercialized, transitioned and used effectively
only if it is consistent with community and industry standards.

4.2.2 Asset Interchange

Aim: The ALOAF will create an asset data interchange specification that provides a common form
of expression of all information about an asset from heterogeneous libraries.

Rationale: Such a specification is necessary for the STARS asset libraries to exchange asset in-
formation in a way that maximizes the usefulness of the exchanged asset.

4.2.3 Common Data Model

Aim: The ALOAF will define a Common Data Model for the expression of asset information
common to asset libraries.

Rationale: The existence of a Common Data Model win allow the meaningful automated exchange
of some asset information among libraries having different data models. A Common Data
Model may also facilitate the implementation of asset library capabilities by providing for
some known information about all exchanged assets.

4.2.4 Asset Library Service Categories

Aim: The ALOAF will identify and categorize a set of asset library services that provide basic
capabilities to create and manipulate asset library data models and asset descriptions.

Rationale: Identification and categorization of basic asset library capabilities or services will pro-
vide a vehicle for communication among parties interested in asset libraries. It will also
provide the basis for establishing priorities in the development of specifications.

4.2.5 Language Independent Specification

Aim: The ALOAF will specify services in a language independent form.

Rationale: Specification of the services in a language independent form will ensure that the spec-
ifications are not biased towards a single language and that they are understandable to a
broad community. Specification in a language independent form is consistent with modern
practices.

Page 11

22 November 91 STARS-TC-04041/001/00

4.2.6 Ada Programmatic Interfaces

Aim: The ALOAF will specify a set of Ada bindings to the services, based on the language
independent specification.

Rationale: The STARS program is oriented to the provision of technology that supports the
development of Ada software systems and is committed to the use of Ada in the development
of software that constitutes that technology.

4.2.7 ALOAF Conformance Criteria

Aim: The ALOAF will define classes of conformance.

Rationale: The development of the ALOAF itself, of capabilities providing ALOAF services, and
asset interchange support will progress over time. Classes of conformance will permit asset
library systems flexibility and an evolutionary path in adherence to the ALOAF. Furthermore
it may be the case that a non-STARS library would choose to participate only in asset
interchange and/or in a limited form of asset interchange. Classes of conformance will provide
that opportunity for non-STARS libraries.

Page 12

22 November 91 STARS-TC-04041/001/00

Part II

The ALOAF Library Model

5 Data Modeling Concepts

The STARS ALOAF addresses three data modeling layers: the meta-model layer, the model layer
and the data layer. Figure 2 depicts the relationships among these layers. In order to understand
the STARS ALOAF, it is important to understand what these layers are, how they relate to asset
libraries and how they relate to the STARS ALOAF.

Meta-Model
Layer

SDescribes

Model Layer

I Describes

Data Layer

Figure 2: Data Modeling Layers

5.1 Data Modeling Layers

The three data modeling layers represent three levels of generality where the meta-model layer is the
most general and the data layer is the least general. The meta-model layer consists of various data
modeling techniques. ERA modeling, data flow modeling, relational modeling and object oriented
modeling are all examples of data modeling techniques. An individual data modeling technique,
referred to as a meta-model, permits the definition of a class of data models; such a class may be
used to describe data for a wide range of applications or organizations.

Page 13

U
22 November 91 STARS-TC-04041/001/00

3 Asset

unigue AssetNam Iversion

Asset Compised of File

m File

Unicue Iden~e Fle He Nne

Key:

PIn Text - Entity Name
Unddya Text - AttbteNm

ItIc Text - Relationship Name

- One-Vo-M"n RelationShip

3 Figure 3: ERA Data Model

The model layer consists of data models. A data model conforms to a meta-model and describes3 data that is specific to an application or organization. The terms "schema" and "information
model" are synonyms for data model. Figure 3 shows a simple example of a data model conforming
to the ERA meta-model.'

The data layer consists of data such as the integer value 7, the character value 'A' or the string value
"Hello World". The data in this layer are organized by and conform to data models in the model
layer. Figure 4 shows a simple example of data conforming to the data model given in Figure 3.

5.2 Relationship to Asset Libraries

An asset library maintains a collection of assets and provides one or more classification schemesI that a reuser may employ to locate an individual asset in that collection. An asset library may also
provide a reuser with information about each asset, such as the creation date of or an abstract for
each asset. All of the information that an asset library maintains about its assets, both information
to support classification and information provided directly to a reuser, is described by the library's
data model. In turn, an asset library's data model is described by its meta-model. Figure I
illustrates the roles of the meta-model and the data model within an asset library. A library's
meta-model and data model fit, respectively, into the meta-model and model layers described
above; the information that a library maintains about its assets fits into the data layer.

'Note that the choice of the ERA meta-model for this example and, consequently, for the example in Figure 4 is
for illustrative purposes only. The reader should not infer STARS ALOAF support for the ERA meta-model.

Page 14

I
22 November 91 STARS-TC-04041/001/00I

File File File

I ARIL AR A
File File

* iKey:
Plain Taxi - Enily Instance

U e Tl - Attribute Value

. Relalionshi Instance

3 Figure 4: ERA Example Data

5.3 Relationship To STARS ALOAF

Asset library data models are ordinarily library specific and may differ greatly from one asset
library to the next. Indeed, some asset library systems, such as Unisys's Reusability Library
Framework (RLF)[SWT89] and SAIC's Asset Management System (AMS)[CD90], are generic and
may be instantiated on a wide variety of data models. Also, the data models of domain-specific
asset libraries are tailored to particular domains. The STARS ALOAF must define standards
that accommodate these diverse data modeling needs. To do this, the STARS ALOAF includes a
standard meta-model (the ALOAF Meta-Model, described in section 7.1) that permits the definition
of a wide range of library data models. There is considerable precedence for the use of a standard
meta-model in support of service definitions and data interchange mechanisms. The Portable
Common Tool Environment (PCTE) [PCT90], A Tool Integration Standard (ATIS) [ATI90] and
the ANSI Information Resource Dictionary System (IRDS) [IRD88] each define services which
manipulate data conforming to a standard meta-model. Likewise, the CASE Data Interchange
Format (CDIF) [CDI91a and ANSI IRDS each support data formats based on standard meta-

," n. -dels.

The STARS ALOAF also includes a standard data model (the Common Data Model for Asset In-
terchange, described in section 7.2). The standard meta-model supports asset interchange between
asset libraries with different data models; thc standard data model provides a basis of communica-
tion for those libraries. That is, the standard data model describes basic information about assets
that can be used to identify assets and to generate catalog entries for assets. The only constraint
that the standard data model imposes on ALOAF-conformant asset libraries is that they may not

Page 15

m
22 November 91 STARS-TC-04041 /001/00

export a data model that conflicts with the standard data model. This is a minor constraint,
however, since the standard data model only describes a limited amount of information.

6 Service Model

The ALOAF service model defines the categories of services that individual asset libraries make
available to reuse tools. The service model describes the relationships of individual services within a
category as well as relationships across category boundaries. The service model provides the uniform
interfaces (and associated terminologies, notations, and descriptions) that reuse tool developers and
asset library framework suppliers use to communicate with each other.

The ALOAF service model is analogous in some respects to the draft ECMA Reference Model
(RM), version 4.0 [Ear90]. The ECMA RM allows the interfaces among the major SEE services
and the interfaces to individual tools within a SEE to be specified. A goal is to allow related services
to be covered by one (or a small number of) standards instead of having each service defined by
its own document. The ECMA RM also provides a means of locating an individual service among
the complex jumble of services a complete SEE might offer; this serves as an aid to comparing and
assessing different SEEs for how well they support portability and interoperability among any tools
built on them.

Figure 5 corresponds to the well-known ECMA "toaster model" (see [Ear9O], figure 1), providing
a top level summary of the base service categories provided by the underlying SEE upon which
ALOAF services will be implemented. Each of these SEE services is defined in section 5 of [Ear9O].

The ECMA RM groups the SEE services it describes into the following categories:

* data repository services,

U e data integration services,

• tools,

* task management services,

3 message services, and

* user interface.

The ALOAF provides services within the framework of a host SEE, or more basically a host
operating system, for a class of applications - specifically asset libraries and the tools that are
designed to cooperate with the asset libraries. As such, a substrate of services is presumed to be
available within the host environment to enable the implementation of the higher level ALOAF
services. For more primitive environments that contain fewer services, the implementation of an
ALOAF-conformant library system will require considerable effort. Within richer environments
such as those based on an object management system, implementing such a library will likely be
significantly easier.

Page 16

I
22 November 91 STARS-TC-04041 /001/00

I •rain Sservien
Data Repository

ITask
Management Services Sl u

Figur 5:t RVATateoe

is the rsponsibiityesfat e deveroer fa etwoirkr ol htwlmk s fue nefc

capbiitis roide b te hsteiroe nt.EC Toaer CMoakmaaeeneaegrlon n

Crtadsin t heres to n ncmn of srieilutadinfg re se-onansericees h ih can be di eetthu
moiiainsrtioing. The prcesserie pointedfacehind task maeen seric aegoAFries povi specificn
exmls h LA osntrqieayreuse-specific versioss-rflated services. I atclr

Atheaawre ALOAF servicoes eiany ser xpetertface service oided becus thaot
evretis the reposssagyofte dervectgr. emesoperaton ofon asset libraryiol htwl aeues sritec

dcpailitions, provied iby co msnther hoteviom ntTer acierspose m tanag men ttedor cotainse
thnervics. Wmire commonikly thdeitifi as ege rices mageent Ote STRSd thss
arp r esin ithye ceatio ige ena e ofrese-brased procsss whcha be m p eet dl
udsin atet ros se nic oie inmtin. t h otaiSE.Tutedwl o specifyctos anyqird oudb
ies-sifi pre s-eated services. heAO F

Aeae 17

eniomnIstemsaesriectgr.Salesoeain mn se irre itiue
ovrantokwlIeur htcm uiain rtcl eetbihdfrhwidvda se

Figure : ECMA ater Mode

22 November 91 STARS-TC-04041/001/00

tools toIl devlopen tools tos

ALOAF services ALOAF services

SEE services SEE services

I library A library B

Figure 6: Relationships Among SEE and ALOAF Services

6.1 ALOAF Service Categories

I The (assumed) SEE services described in the next section provide the foundation on which the
ALOAF services described in this section are built. Figure 6 provides a simple diagram that shows
this relationship among these services, the user tools that are built on them, and the (re)users that
employ them. Note how the ALOAF is built on top of the SEE services, but not vice versa. Figure
6 can be seen as providing a two dimensional "slice" through the three dimensional figure 5.

The ALOAF services are organized into categories identified by the following list:

* library management,

* data model,

* asset description,

* session,

I query,

* asset location,

* metrics, and

I * access control.

Each of the ALOAF service categories are briefly described below. Some of these ALOAF services
may be provided entirely by functionality built-in to the underlying SEE's framework services, while

Page 18

22 November 91 STARS-TC-04041/001/00

others may be provided by SEE tools that communicate with the other services/tools through the
message services and use SEE (and possibly other ALOAF) services. Note that "SEE tools" in this
context refers to entities residing in ECMA tool slots (figure 5) and is not to be confused with the
"library tools" shown in figure 1 in section 1, which are interpreted strictly as clients, and not as
providers, of ALOAF services.

6.1.1 Library Management Services

This category includes services for managing and manipulating a library within its operating envi-
ronment, carrying with it the structure of an implicit or explicit data model. This category provides
the services to cause a new asset library to be created, or an existing library to be deleted as well
as opening a library for modification and closing it after modifications are completed.I
6.1.2 Data Model Services

IThis category includes services to manage and manipulate library data models in accordance with a
particular meta-model, as discussed earlier in section 5. A library data model defines the structure
of the information used to describe each library asset in order to organize, categorize, search,
understand, evaluate, extract, adapt, and integrate the asset. The library's classification scheme
is part of its data model. Data model services include general classes of operations such as read
model element (e.g., class and attributes), write model element, update model element, delete
model element, and import and export model.

i 6.1.3 Asset Description Services

The services in this category manage and manipulate individual asset descriptions. Assets
are catalogued in the library in the form of asset descriptions represented as instances of
classes in the library data model. The asset description services will allow descriptions to be
read/written/updated/deleted, and will allow asset descriptions to be imported from and exported
to other libraries.

6.1.4 Session Services

ISession services manage connections to asset libraries. Such services support users as well as tools
operating on behalf of users to, for example, transfer assets and asset descriptions between sites.
This category includes any services associated with establishing user identity and access rights and
with managing the resulting connection with the library. Session services support record keeping,
user and system notifications, and similar functions associated with use of the library.

I
I
IPage 19

22 November 91 STARS-TC-04041/001/00

6.1.5 Query Services

The goal of query services is to provide effective means for a variety of users to identify the assets
they want using flexible query mechanisms. The query services are the mechanisms used to support
traversal of a library in the context of its data model to find the set of assets that best match the
user's criteria. A query service provides an algebra on the possible asset description attributes.
Queries may be iterative, with a user supplying successively stronger criteria to refine a search
until a set of assets of interest is identified.

6.1.6 Asset Location Services

Once a user has identified assets of interest, the asset location services provide the information
needed to obtain the assets. Underlying SEE services may be used to examine an asset and
to retrieve it in a [re]usable form. Access to an asset may be more restrictive than query and
identification and/or require additional steps.

6.1.7 Metrics Services

Libraries will generally be expected to collect library metrics information and make some portion
of the information available to users and administrators. Reuse tools which provide reports on
asset library usage and manage the change logs on the data models, asset descriptions, and assets
will need corresponding services. The metrics services category includes services to provide metrics
on the structure and population of the asset library. Services which control the collection and
disposition of statistical information are also in this category.

6.1.8 Access Control Services

The access control services manage the information used to determine which ALOAF data and
services a user is permitted to access. Access control services help maintain the wide variety of
restrictions that may be placed on assets and on users either legally or by policy. The access controls
may be different from traditional SEE Access Control Lists (ACLs). These ALOAF services may
provide access controls at a very fine grain (such as controls on individual model attributes) or very
large grain (such as reuse roles).

6.2 Assumed SEE Services

This section of the ALOAF service model identifies some SEE services that may be provided by an
underlying SEE. Many ALOAF services will depend upon a SEE's services and so it is important
that this ALOAF service model indicate the interrelationships among these services. The details
of the functionality provided by these SEE services are outside the scope of this document.

Data Storage Service

Page 20

22 November 91 STARS-TC-04041 /001/00

Data storage services are associated with actual storage and retrieval of objects and information
about objects. Object descriptions are the explicitly declared characteristics of entities ("attributes"
or "properties"). "Information about objects" covers information needed for a tool to perform
effectively, but not formally declared as an object attribute. A size in bytes of an object and its
sub-objects (taken to the lowest level) might be one example.

Relationship Service

Relationship services are concerned with relating objects and other entities. ECMA defines a service
dealing with defining and maintaining typed, attributed "relationships" in the formal E-R sense.
ALOAF use of this Relationship Service is intended to be more general, including informal and
temporary groupings of objects.

Name Service

Name services translate among system-generated unique identifiers ("surrogates" in the ECMA
RM) and user-mnemonic names. Surrogates should be visible to tools, which may or may not make
them visible to users; however, for most purposes, use of a name in association with environmental
context should produce the same effect as use of the surrogate.

Location Service

Location services support distribution of the SEE and its objects.

Data Transaction Service

Data transaction services are associated with ensuring that work is performed in complete atomic
units ("transactions").

Concurrency Service

Concurrency services are required to control simultaneous access to objects.

Process Support Service

Process support services are: "the basic support mechanisms for active entities. They provide
mechanisms to support them while they are and are not executing and mechanisms to monitor
them while they are." [Ear90].

Archive Service

Archive service: "carries out a mapping between the online storage and offline storage of entities. A
placeholder may represent the entity in online storage, while the entity is archived offline." [Ear90].

Page 21

I
22 November 91 STARS-TC-04041/001/00

-- Backup Service

Backup services provide the means to restore service following media failure. This could include
-- reaccomplishing committed transactions since the last backup, using transaction logs or journals.

I Data Transformation/Interchange Service

Data transformation/interchange services support two-way translation between objects in the repos-
itory and an agreed-on interchange format. This would include model description translation, as
well as translations to and from various formats for internal storage.

History Service

History services are the accounting functions that make available information about changes
of state of entities (broadly scoped to include states such as "popularity" (number of times
queried/extracted) and "quality" (profile of problem reports). This service is probably closely
related to transaction logging and journalling, but should provide the hooks for administrators to
control amount and type of logging.

Version Service

Version services are the core functions of applying a version identification policy to entities in an
object/file system.

Security Service

Security services are the subset of overall SEE security measures aimed at restricting access to
objects and their services.

Tool Registration Service

Tool registration services are probably not separate services per se, but possibly some interaction
in order to support security policies and tool usage policies (which tools can access which object
types).

Page 22

22 November 91 STARS-TC-04041/001/00

Part III

The ALOAF Specifications

I 7 Data Modeling and Asset Interchange

The concepts of data modeling and asset interchange are inextricably linked. Asset interchange is
the act of transferring one or more assets from one asset library to another. However, as discussed
in section 5.2, asset libraries, in addition to managing collections of assets, maintain information
about their assets. The information that a library maintains for each asset represents a significant
amount of cataloging labor. In short, this information is valuable. The STARS ALOAF supports
the view that an asset interchange mechanism must be capable of transferring both assets and
information about assets. To reflect this view, the Asset Interchange Specification must include
a library independent representation for information about assets. In turn, this representation
requires a library independent technique for describing information about assets. The ALOAF
Meta-Model, described in section 7.1, satisfies this requirement. The Asset Interchange Specifica-
tion's dependence on the ALOAF Meta-Model forms the relationship between data modeling and
asset interchange.

The Asset Interchange Specification embodies both a short term approach and a long term ap-
proach to asset interchange. The goal of the short term approach is to provide a rudimentary
asset interchange capability as quickly as possible. The goal of the long term approach is to de-
velop a powerful and flexible asset interchange capability that will effectively serve the needs of
distributed heterogeneous asset libraries. The short term approach is based upon a standard data
model, termed the Common Data Model for Asset Interchange. The fundamental drawback to this
approach is that no standard data model can accommodate the diverse data modeling needs of
asset libraries. In the short term, however, constructing an asset interchange approach around a
standard data model has one significant advantage: it can be implemented quickly.

The long term approach to asset interchange is based upon a standard meta-model, the ALOAF
Meta-Model, and an asset library independent representation of library data models and data,
termed the Asset Interchange Data Format. The drawback of the short term approach is the

strength of the long term approach. The ALOAF Meta-Model and the Asset Interchange Data
Format allow asset libraries to exchange information conforming to a wide range of library data
models. The Common Data Model, as a standard data model, also plays a role in the long term
approach, as described in section 5.3. Ideally, the Asset Interchange Data Format will be derived
from existing or evolving data interchange standards. This will ensure that the format will remain
suitable for asset interchange in the future as well as in the present. Because of this, the evaluation
of data interchange standards plays a significant role in the long term approach.

This version of the STARS ALOAF document includes major contributions to both asset inter-
change approaches. The Common Data Model for Asset Interchange, described in section 7.2, and
the Asset Interchange Language, described in appendix D2 , are an implementation of the short

2The Asset Interchange Language provides a simple technique for representing data that conforms to the Common
Data Model. This language was not derived from any existing or emerging standards and was developed solely as a
stop-gap measure to support a rudimentary asset interchange capability.

Page 23

U
22 November 91 STARS-TC-04041/001/00

term approach. The Common Data Model is also a first attempt at satisfying the standard data
model needs of the long term approach. The ALOAF Meta-Model, described in section 7.1, is
the cornerstone of the long term approach. This meta-model provides a standard technique for
constructing library data models and supports the development of a library independent represen-
tation for those models. The ALOAF Meta-Model and the standards evaluation activity, described
in section 7.3, are the first steps towards the specification of the Asset Interchange Data Format.

I 7.1 The Meta-Model

An asset description is not simply an arbitrary collection of data about an asset. Each asset library
includes a data model which defines the structure and content of that library's asset descriptions.
Because of this, asset libraries need certain fundamental data modeling capabilities. The ALOAF
Meta-Model defines these capabilities. That is, this meta-model provides the basic constructs and
rules that are used in the creation and modification of library data models. The ALOAF Meta-
Model does not define the structure or content of the information maintained by asset libraries;
rather, it provides a means for defining that structure and content.

A standard library meta-model offers three benefits. First, it can be used as the foundation for
a library-independent representation of library data models. In turn, this representation can beI used to support a sophisticated asset interchange capability. Second, a meta-model supports the
development of data model independent service specifications. Such specifications can be used as
an open architecture standard for asset libraries. Finally, a meta-model provides some fundamental
concepts and terminology for individuals involved in the development of library data models.

The ALOAF Meta-Model is divided into two sections: the Core Meta-Model and Meta-Model
Extensions. The Core Meta-Model includes the basic modeling techniques that must be supported
by all ALOAF implementations. Meta-Model Extensions are important data modeling techniques
that, due to considerations of technical difficulty and present immaturity of evolving standards,
need not be supported by all ALOAF implementations. The rationale for a particular extension is
provided in the section which describes that extension.

7.1.1 The Core Meta-Model

IThe ALOAF Core Meta-Model defines two constructs, classes and relationships, and two concepts,
specialization and instantiation. The two constructs are the basic components or "building blocks"
of library data models. Specialization is a relationship that is fundamental to the structure of a

-- library data model. Instantiation is the techrque by which the constructs of asset descriptions,
objects and links, are created from the constr, s of library data models, classes and relationships.
Objects and links will be described in more detail in section 7.1.1.4.

Note that the Core Meta-Model's treatment of relationships is tentative and is under considerationg by the participants of the ALOAF working group.

I

3= Page 24

22 November 91 STARS-TC-04041/001/00

1 7.1.1.1 Classes A class models a set of objects that share a common structure.3 The attributes
of a class define that common structure; each attribute defines some individually accessible part of3 that structure. A class may have an unlimited number of attributes. Each attribute shall belong
to exactly one class.

3 The information needed to define a class is:

Class Name A mnemonic, human-readable identifier for the class. This name must be unique
across the names of all the classes in the library data model.

Parent Class The class identifier of the parent class. For a description of parent classes see
section 7.1.1.3.

The information needed to define each attribute of a class is:

Attribute Name A mnemonic, human-readable identifier for the attribute. This name must be
unique across the names of all the attributes of the class.

Attribute Value Type The type of data that will be supplied for the attribute when the class is
instantiated. The valid attribute value types and the possible values for those types are:

3 Value Type Possible Values

Boolean TRUE or FALSE
Integer An integer number
Float A floating point number
Time A date and time of day
String A sequence of ASCII characters

7.1.1.2 Relationships A relationship between classes models the associations, or links, that
may be created between instances of those classes. A class may participate in an unlimited number
of relationships. A relationship shall emanate from exactly one class (termed the source class) and
shall target exactly one class (termed the destination class). The source and destination classes for
a relationship may be the same class.

* The information needed to define a relationship is:

Relationship Name A mnemonic, human-readable identifier for the relationship. This nameImust be unique amongst the names of all relationships that have the same source and desti-
nation classes.

3, Source Class The class identifier for the class that is the source of the relationship.

"The typical object-oriented view of a class, as stated in [Boo9l], is "a set of objects that share a common
structure and behavior." The ALOAF Meta-Model, however, is a meta-data model; the class construct defined in
this meta-model does not model object behavior.

3 Page 25

I
22 Novembor 91 STARS-TC-04041 /001/00

I Target Class The class identifier for the class that is the destination of the relationship.

Lower Bound The minimum number of links (instances of the relationship) that may emanate
-- from an object of source class. The lower bound may never be greater than the upper bound.

Upper Bound The maximum number of links (instances of the relationship) that may emanate
from an object of source class. The upper bound may never be less than the lower bound.

7.1.1.3 Specialization The classes of a library data model are formed into a specialization
hierarchy. That is, each class in a library data model participates in the specialization, or par-
ent/child, relationship. In this relationship, a class shall have exactly one parent class (except for
the root class, see below) and may have an unlimited number of child classes. The hierarchy formed
by the specialization relationship is acyclic; a class may never be the parent of any of its ancestors
(e.g. its parent, its parent's parent, etc.).

The specialization relationship has two semantic implications. First, a class inherits the attributes
of all its ancestor classes. Inherited attributes, other than the fact that they are inherited, are
indistinguishable from attributes specifically defined for a particular class. Second, a class may
participate in any relationship in which its ancestors may participate. The rules regarding the
names of attributes and relationships also apply to inherited attributes and relationships.

Every library data model includes a special class known as the root class. This class has no parents
and is an ancestor of every class in the specialization hierarchy. The class name, class identifier
and attributes of the root class are not defined by this meta-mode].

Note that the specialization concept defined in the ALOAF Core Meta-Model implies single inher-5itance. Multiple inheritance is addressed as a Meta-Model Extension.

7.1.1.4 Instantiation An asset description is created by instantiating classes and relationships
- An instance of a class is referred to as an object. A class may be instantiated by an unlimited

number of objects. Each object shall be an instance of exactly one class. The information needed
to instantiate a class is:

Object Identifier A unique identifier for the object amongst all the objects maintained by an
asset library.

Attribute Values A default initial value for each attribute associated with the class. The default
initial value for a particular attribute depends upon its value type, as follows:

Value Type Default Initial Value

Boolean FALSE
Integer 0
Float 0.0
Time 00:00:00, January 1, 19703 String felg (empty string)

* Page 26

22 November 91 STARS-TC-0404 1/001/00

An instance of a relationship is referred to as a link. Barring violation of upper bound constraints,
a relationship may be instantiated by an unlimited number of links. Each link shall be an instance
of exactly one relationship. The information needed to instantiate a relationship is:

Link Identifier A unique identifier for the link amongst all the links maintained by an asset
library.

Source Object The unique identifier for the source object of the link. The source object must be
an instance of the source class defined by the relationship.

Destination Object The unique identifier for the destination object of the link. The destination
object must be an instance of the destination class defined by the relationship.

Also, a relationship instantiation shall not violate the relationship's upper bound constraint on the
source object. Symmetrically, when a link is deleted, the deletion shall not violate the relationship's
lower bound constraint on the source object.

Note that the ALOAF Core Meta-Model specifies single instantiation. Each object shall be an
instance of exactly one class. Multiple instantiation, where each object may be an instance of an
unlimited number of classes, is addressed as a Meta-Model Extension.

7.1.2 Meta-Model Extensions

Multiple inheritance and multiple instantiation have been identified as useful meta-model exten-
sions. Multiple inheritance extends the Core Meta-Model's inheritance capability to allow each
class to have an unlimited number of parent classes Multiple iustanti-on extends the Core Meta-
Model's instantiation capability to allow each object to instantiate an unlimited number of classes.
These extensions will be described in detail in Version 1.0 of the ALOAF document.

7.2 The Common Data Model for Asset Interchange

This section supports the short term approach to asset interchange by defining the Common Data
Model for Asset Interchange. This data model describes information that is commonly maintained
by a majority of STARS asset libraries.

This section also supports the long term approach to asset interchange by defining the basic infor-
mation needed to identify and generate catalog entries for assets. In the long term, an asset library
that conforms to the ALOAF must not export a data model that conflicts with the Common Data
Model. Otherwise, an ALOAF-conformant importing library will misinterpret the semantics of data
conforming to that conflicting model. It is important to understand, however, that the Common
Data Model does not place any requirements on the internal data model of a conforming asset
library. There is no requirement that a conforming asset library export its internal data model; it
merely may not export a data model that conflicts with the Common Data Model.

Note that this version of the Common Data Model preceded the ALOAF Meta-Model and includes
an implicit meta-model that is similar to but independent of the ALOAF Meta-Model. Version

Page 27

22 November 91 STARS-TC-04041 /001/00

1.0 of the ALOAF document will include a Common Data Model that conforms to the ALOAF
Meta-Model.

7.2.1 The Representation of the Common Data Model

The Common Data Model will be represented as a class hierarchy. There are two reasons for this
representation. First, the information maintained about an asset by each STARS asset library can
be represented as a class hierarchy. In other words, this representation is sufficiently general. Sec-
ond, due to the popularity of object oriented development, class hierarchies are widely understood
and can be readily communicated to the software engineering community.

7.2.1.1 The Fundamentals A class defines a set of objects. The objects included in a class
have similar behavioral characteristics and similar attributes. The Common Data Model uses a
degenerate form of this definition of a class. Since the data model is a description of a data structure,
only attributes are included in the data model's class definitions. The behavioral characteristics of
these classes are irrelevant.

Classes can be organized into a hierarchy based upon a relationship among the classes. The Com-I' mon Data Model's class hierarchy is based upon the inheritance (or "is a kind of") relationship.
Every class in this class hierarchy inherits the attributes of its superclass. The Common Data Model
does not require multiple class hierarchies based upon the inheritance relationship (i.e., multiple
inheritance).

Attributes maintain the state of an object. The Common Data Model requires four types of at-
tributes: string, text, date and link. String attributes simply maintain strings of ASCII characters.
Text attributes maintain "2-dimensional" strings of ASCII characters (large blocks of text). Date
attributes maintain calendar dates. Link attributes maintain relationships (other than the inher-
itance relationship) among classes. The relationships defined by link attributes are bi-directional
and have specified cardinalities in each direction.

I 7.2.1.2 The Representation of a Class Hierarchy The Common Data Model's class hier-
archy is represented using indented class names as follows:

Root Class Name
Class Name 1

SSubclass Name 1
Subclass Name 2I
Subclass Name N

Class Name 2

I
IPage 28

I
22 November 91 STARS-TC-04041/001/00

S Class Name N

3 This representation of a class hierarchy is easy to maintain in a text file and, for shallow hierarchies,
is easy to read.

7.2.1.3 The Representation of a Class As stated in section 7.2.1.1, attributes are the main
components of the Common Data Model's class definitions. As such, a class definition includes the
location of the class in the hierarchy (i.e., its superclass and its subclass(es)) and a collection of
attributes. The following is a template for the representation of a class (items enclosed in brackets
are optional):

CLASS NAME
[SUPERCLASS NAME :]
[SUBCLASS NAME(S) :]
ATTRIBUTE NAME(S)I

Note that the SUPERCLASS NAME information is optional because the root node in the hierarchy
will not have a parent class. In similar fashion, the classes at the bottom of the class hierarchy will
not need the SUBCLASS NAME(S) information.

3 7.2.1.4 The Representation of an Attribute To complete the definition of a class, the
attributes of that class must be defined. A general attribute definition includes the following3 information:

Name The attribute's name

I Type The attribute's type (string, text, date or link)

Mandatory Whether or not a value must be supplied for the attribute

I Unique Whether or not the value for that attribute must be unique across an independent data set
conforming to a particular data model (this information is replaced by cardinality information3 in ink attributes)

A link attribute definition additionally includes:

Range Class The target class for the relationship specified by the link attribute

U Tnverse The name of the link attribute that specifies the inverse relationship

Cardinality The number of objects that the specified relationship can target (this information3 replaces uniqueness information)

S.From this information a template representation of an attribute definition can be created. This
template is as follows (items enclosed in brackets are optional):

3 Page 29

22 November 91 STARS-TC-04041/001 /00

Object telt~

C- assName

I
Asset File Organizato Pr

Name - File_Name - Name - Name

.ltemateoName . PanO Asset - A o mato_N - Address
- Version - Address - Telephone_Number
ReleseDate - TelephoneNumber - Electronic Mail_Address

-Descripion .Created Asset] - s_ContadFor (Asset]
- Resatcons_App
.L COmpofdO[R
.s_ArzwwL Of[Asso1]

I _s- m rt_0f Asse]

Requires [Asset)
kqLR"quey [Asset)
.was_CreateSy (Organizmlon)I - k_Undeistood~y(Peison

Figure 7: The Common Data Model

NAME
TYPE
MANDATORY

[UNIQUE
[RANGE CLASS :)
[INVERSE :]
[CARDINALITY :1

7.2.1.5 Constraints Imposed by this Representation Any organization that attempts to
create a data model using this representation will have three constraints imposed upon it by this
representation. Each of these constraints relates to the integrity of the data model. First, attribute
names must be unique. A class identifies each of its attributes using the attribute name. Second,
class names must be unique. A link attribute identifies the range class for its relationship using
the class name. Finally, the creating organization must be careful to specify link attributes in both
directions.

7.2.2 The Model

The class hierarchy, classes and attributes of the Common Data Model are defined using the rep-
resentations provided in sections 7.2.1.2, 7.2.1.3 and 7.2.1.4, respectively. A graphic representation
of the Common Data Model is given in Figure 7

i Page 30

22 November 91 STARS-TC-04041/001/00

7.2.2.1 The Class Hierarchy

Obj ect
Asset
File
Person
Organization

Although the root class of this hierarchy is named Object, this hierarchy is definitely oriented
towards supporting the Asset class. The Object class was created in recognition of the fact that
some of the information needed to support an asset is external to the Asset class. Objects from
the remaining classes, File, Person and Organization, provide supporting information for assets.

7.2.2.2 The Classes

7.2.2.2.1 The Object Class

CLASS NAME : Object
SUBCLASS NAME(S) : Asset

File
Organization
Person

ATTRIBUTE NAME(S) : Identifier
Class-Name

This class represents the class of all objects that can be described by the Common Data Model.
This class serves as the root class for the Common Data Model and, as such, all the other classes
in the model inherit the attributes of this class.

7.2.2.2.2 The Asset Class

CLASS NAME : Asset
SUPERCLASS NAME : Object
ATTRIBUTE NAME(S) : Name

Alternate-Name
Version
Release-Date
Description
Restrictions-Apply
IsComposedOf

IsAncestorOf
IsDescendantOf
Requires

Page 31

I
22 November 91 STARS-TC-04041/001 /00

IIsRequiredBy
WasCreatedBy

IIsUnderstoodBy
This class represents the class of all assets that can be described by the Common Data Model. The
physical representation of an asset is a collection of zero or more files. Additionally, an asset may
reference people, organizations or other assets for descriptive context.I
7.2.2.2.3 The File Class

CLASS NAME : File
SUPERCLASS NAME : Object
ATTRIBUTE NAME(S) : File-Name

Is.PartOf

This class represents the class of all files that can be described by the Common Data Model. An
asset is composed of zero or more fies. The Common Data Model does not attempt to specify the
format, content or access mechanisms for these files. It is expected, however, that these files will
conform to the POSIX standard.

7.2.2.2.4 The Organization Class

CLASS NAME : Organization
SUPERCLASS NAME : Obj ect
ATTRIBUTE NAME(S) : Name

Alternate-Name
Address
Telephone-Number
Created

This class represents the class of all organizations that can be described by the Common DataIModel. Assets are created by organizations and this class allows us to capture information about
those organizations and to link assets with that information.

7.2.2.2.5 The Person Class

CLASS NAME : Person
SUPERCLASS NAME : Object
ATTRIBUTE NAME(S) : Name

Address

Telephone-Number
ElectronicMailAddress

Is.ContactFor

IPage 32

22 November 91 STARS- TC-0404 1/001/00

This class represents the class of all people that can be described by the Common Data Model.
Assets are understood by people and this class allows us to capture information about those people
and to link assets with that information.

7.2.2.3 The Attributes

7.2.2.3.1 The Address Attribute

NAME : Address
TYPE : String
MANDATORY : FalseI UNIQUE : False

This attribute allows each organization and person described by the Common Data Model to have3 an address.

m 7.2.2.3.2 The Alternate-Name Attribute

NAME : Alternate-Name
TYPE : String
MANDATORY : False

m UNIQUE : False

This attribute allows each asset and organization described by the Common Data Model to have an
alternate (possibly abbreviated) name. This attribute is intended as a human-readable identifier
for an asset or organization.

1 7.2.2.3.3 The Class-.Name Attribute

I NAME : Class-Name
TYPE : String
MANDATORY : True

UNIQUE : False

This attribute specifies that each object described by the Common Data Model will identify the

class under which it was instantiated.

17.2.2.3.4 The Created Attribute

NAME Created

I Page 33

22 November 91 STARS-TC-04041/001/00

TYPE Link
MANDATORY False
RANGE CLASS Asset
INVERSE Was-CreatedBy
CARDINALITY N

This attribute allows each organization described by the Common Data Model to serve as the
creating organization for one or more assets.

7.2.2.3.5 The Description Attribute

NAME : Description
TYPE : Text
MANDATORY : False
UNIQUE : False

This attribute allows each asset described by the Common Data Model to have an abstract.

7.2.2.3.6 The ElectronicMailAddress Attribute

NAME : ElectronicMailAddress
TYPE : String
MANDATORY : False
UNIQUE : False

This attribute allows each person described by the Common Data Model to have an electronic mail
address.

7.2.2.3.7 The File-Name Attribute

NAME : File-Name
TYPE : String

ANDATORY : True
UNIQUE : True

This attribute specifies that each file described by the Common Data Model will maintain a unique
POSIX file name.

7.2.2.3.8 The Identifier Attribute

Page 34

22 November 91 STARS-TC-04041/001/00

NAME Identifier
TYPE : String
MANDATORY : True
UNIQUE : True

This attribute specifies that each object described by the Common Data Model will have a unique
identifier.

7.2.2.3.9 The IsAncestorOf Attribute

NAME : IsAncestorOf
TYPE : Link
MANDATORY : False
RANGE CLASS : Asset
INVERSE : IsDescendantOf
CARDINALITY : N

This attribute allows each asset described by the Common Data Model to identify one or more
descendant assets.

7.2.2.3.10 The IsComposedOf Attribute

NAME IsComposedOf
TYPE Link
MANDATORY : False
RANGE CLASS : File
INVERSE : IsPartOf
CARDINALITY : N

This attribute allows each asset described by the Common Data Model to be composed of one or
more files.

7.2.2.3.11 The IsContactFor Attribute

NAME : IsContact.For
TYPE : Link
MANDATORY : False
RANGE CLASS : Asset
INVERS : IsUnderstoodBy
CARDINALITY : N

This attribute allows each person described by the Common Data Model to serve as the contact
for one or more assets.

Page 35

22 November 91 STARS-TC-04041 /001/00

7.2.2.3.12 The IsDescendantOf Attribute

NAME : IsDescendantOf
TYPE : Link
MANDATORY : False
RANGE CLASS : Asset
INVERSE : IsAncestorOf
CARDINALITY : N

This attribute allows each asset described by the Common Data Model to identify one or more
ancestor assets.

7.2.2.3.13 The IsPartOf Attribute

NAME : IsPartOf
TYPE : Link
MANDATORY : True
RANGE CLASS : Asset
INVERSE : IsComposedOf
CARDINALITY : N

This attribute specifies that each file described by the Common Data Model must be a component
of one or more assets.

7.2.2.3.14 The IsRequiredBy Attribute

NAME : IsRequiredBy
TYPE : Link
MANDATORY : False
RANGE CLASS : Asset
INVERSE : Requires
CARDINALITY : N

This attribute allows each asset described by the Common Data Model to be relied upon by one
or more other assets.

7.2.2.3.15 The IsUnderstoodBy Attribute

NAME : IsUnderstoodBy
TYPE : Link
MANDATORY : False
RANGE CLASS : Person
INVERSE : IsContactFor
CARDINALITY : N

Page 36

22 November 91 STARS-TC-04041 /001/00

This attribute allows each asset described by the Common Data Model to identify one or more
points of contact.

7.2.2.3.16 The Name Attribute

NAME : Name
TYPE : String
MANDATORY : True
UNIQUE : False

This attribute specifies that each asset, organization and person described by the Common Data
Model will have a name. The name attribute is intended as a human-readable identifier for an
asset, organization and person.

7.2.2.3.17 The ReleaseDate Attribute

NAME : Release-Date
TYPE : Date
MANDATORY : False
UNIQUE : False

This attribute allows each asset described by the Common Data Model to have a release date. The
release date is intended to identify the date the asset was released by the creating organization.

7.2.2.3.18 The Requires Attribute

NAME Requires
TYPE Link
MANDATORY : False
RANGE CLASS : Asset
INVERSE : IsRequiredBy
CARDINALITY : N

This attribute allows each asset described by the Common Data Model to depend upon one or
more other assets.

7.2.2.3.19 The Restrictions-Apply Attribute

NAME : Restrictions-Apply
TYPE : Text
MANDATORY : False
UNIQUE : False

Page 37

I
22 November 91 STARS-TC-04041/001/00

This attribute allows each asset described by the Common Data Model to have a statement of the
legal restrictions imposed upon any part of that asset.

7.2.2.3.20 The TelephoneNumber Attribute

NAME : Telephone-Number
TYPE : String
MANDATORY : False
UNIQUE : False

This attribute allows each organization and person described by the Common Data Model to have
a telephone number.

7.2.2.3.21 The Version Attribute

NAME : Version
TYPE : String
MANDATORY : False
UNIQUE : False

This attribute allows each asset described by the Common Data Model to have a version identi-
fier. The version identifier is intended as a human-readable identifier. This identifier would allow
individuals to distinguish among variations and revisions of the same asset.

7.2.2.3.22 The WasCreatedBy Attribute

NAME : WasCreatedBy
TYPE : Link
MANDATORY : False
RANGE CLASS : Organization
INVERSE : Created
CARDINALITY : N

This attribute allows each asset described by the Common Data Model to identify one or more
creating organizations.

7.2.3 Rationale for the Common Data Model

The definition of the Common Data Model was driven by three basic requirements. First, the
model should not include any library-specific asset classification information. Second, the model
should use as few classes and attributes as possible. Third, the model should be extensible. The
basis for each of these requirements is discussed in the following paragraphs.

Page 38

22 November 91 STARS-TC-04041/001/00

Asset classification information is always dependent upon a particular classification scheme. It is
expected that the asset libraries conforming to the ALOAF will employ a wide variety of classifi-
cation schemes for their assets. As such, asset classification information will vary (possibly wildly)
from one asset library to another. It seems unlikely that the ALOAF will be able to require asset
libraries to export a common classification scheme. Therefore, since the Common Data Model3 includes only information that is common across a variety of asset libraries, it should not include
library-specific classification information.

In the long term, one requirement placed upon asset libraries conforming to the ALOAF is thatIthey should not export a data model that conflicts with the Common Data Model. The ALOAF
should not make it difficult for asset libraries to satisfy this requirement. One way to achieve this
goal is to specify a data model that uses as few classes and attributes as possible. By specifying
such a "low profile" data model, the probability of interfering with other data models is reduced.

The information included in the Common Data Model is currently maintained by a majority of
asset libraries that have been built using STARS asset library mechanisms. However, it is expected
that the ALOAF will be addressing the needs of a larger collection of asset libraries. At some
point the common information needs of those libraries may exceed the capabilities of the Common
Data Model. In order to satisfy any future common information needs, the data model should be
extensible.

J
7.2.3.1 The Rationale for the Class Hierarchy In order to understand the Common Data
Model's class hierarchy we need to begin with its purpose. The Common Data Model is meant to
facilitate the interchange of assets and descriptive information about assets among asset libraries.
In turn, the purpose of an asset library is to maintain an electronic catalog of reusable software
assets and to provide a mechanism for rapidly accessing any of the cataloged assets. From this
we can begin to understand the type of information that is going to be interchanged. Ultimately,
reusable software assets are collections of files.4 The collection of files comprising any given asset is
generated by software engineers using software development tools. At some point this collection of
files is deemed reusable and is cataloged in an asset library. Descriptive information about an asset
may be included in an asset library's catalog. This information typically includes some description
of the organization(s) that created the asset and some description of the person (or people) that
understand the asset. In accordance with this view of reusable software assets and asset libraries,
the classes Asset, File, Organization and Person have been included in the Common Data Model.
Each of these classes is discussed in the next section.

7.2.3.2 The Rationale for the Classes and the Attributes The Obj ect class was createdS to support classes external to the Asset class. A beneficial by-product of this class is that it also
supports extensibility. Additional subclasses of the Obj ect class, modeling objects that are external
to any of the existing subclasses, can easily be added. The attributes of the Object class provide
a unique identifier and a class name for all objects in the data model. The Identifier attribute
supports link attributes. That is, the attribute value of a link attribute is the unique identifier of
the target object. The Class-Name attribute supports importing asset libraries. A library that
imports data conforming to this model will be able to determine an object's class based on its

4In more advanced software development environments, assets may be composed of finer grainet. mponents. The
principles that apply to files apply to those finer grained components as well.

Page 39

22 November 91 STARS-TC-04041/001/00

Class-Name attribute value.

The physical representation of a reusable software asset is a collection of files. The abstract rep-
resentation of an asset is defined by the Asset class. Each of the following attributes describe an
asset:

" The Name, Alternate-Name and Version attributes provide reusers with a convenient mech-
anism for referring to an asset.

* The Release-Date attribute provides reusers with the age of an asset.

" The Description attribute provides reusers with a broad overview of an asset that cannot
be obtained from the classification information.

Each of the following attributes describe references to assets:

" The IsAncestorOf and IsDescendantOf attributes identify the ancestors and descen-
dants, respectively, of an asset.

" The Requires and IsRequiredBy attributes identify an asset's location in a dependency
hierarchy.

Each of the following attributes describe references to external objects that support an asset:

o The Is-CcmposedOf attribute identifies the physical representation of an asset.

o The WasCreatedBy attribute identifies the organization(s) that created an asset.

* The IsUnderstoodBy attribute identifies the person (or people) that understand an asset.

Each of these attributes describes information about an asset that is commonly available from
a majority of the STARS asset libraries. Additionally, the IsComposedOf attribute supports
importing asset libraries by identifying the physical representation of an asset.

An asset is composed of files. The File class represents external files stored in the POSIX file
system. The IsPartOf attribute and its inverse, the IsComposedOf attribute of the Asset class,
describe a relationship between files and assets. The File-Name attribute of this class describes
a unique identifier for external files (i.e. a file name in the POSIX fie system). Both of these
attributes support importing asset libraries by linking an asset with the external fies that are
components of that asset.

Assets are created by organizations. The Organization class represents external organiza-
tions such as corporations or government agencies. The Name, Alternate-Name, Address and
Telephone-Number attributes describe information that refers to an external organization. This
information is commonly available from a majority of the STARS asset libraries. The Created at-
tribute and its inverse, the WasCreatedBy attribute of the Asset class, support importing asset
libraries by describing the relationship between assets and organizations.

Page 40

22 November 91 STARS-TC-04041/001/00

Assets are understood by people. The Person class represents actual people such as
software engineers or program managers. The Name, Address, Telephone-Number and
Electronic-MailAddress attributes describe information that refers to an actual person.
This information is commonly available from a majority of the STARS asset libraries. The
IsContactFor attribute and its inverse, the IsUnderstoodBy attribute of the Asset class,
support importing asset libraries by describing a relationship between assets and people.

7.3 Evaluation of Standards

This section supports the long term approach to asset interchange by describing the status of the
standards evaluation activity. This activity is primarily oriented towards asset interchange. The
goal of this activity is to determine if there are any existing or maturing standards that include
data interchange capabilities equivalent to those capabilities required by the asset interchange long
term approach. Currently, this activity has determined that three standards, summarized in the
following three subsections, include capabilities similar to those required by the long term approach.
Other standards have also been evaluated and the results of those evaluations are described in
section 7.3.4. The initial conclusions of this activity are presented in section 7.3.5.

7.3.1 Summary of the Data Interchange Capabilities of ANSI IRDS

The ANSI Informatioh Resource Dictionary System (IRDS) is American National Standard X3.138-
1988 [IRD88]. This standard defines the requirements for a software tool that can be used to manage
an Information Resource Dictionary (IRD). An IRD is a model of an organization's information
resources. ANSI IRDS specifies a set of commands, the IRD-IRD Interface commands, that are
used to transfer an IRD among conformant implementations of the standard. Note that when an
IRD is transferred, the technique used to describe that IRD, the IRD Schema, must be transferred
with that IRD. The ANSI IRDS Export-Import File Format, a draft proposed American National
Standard, provides a representation for IRD Schemas and IRD's. The ANSI IRDS standard does
not yet address the management of information resources, it only addresses the management of
IRD's.

Approach An IRD is transferred when the exporting IRDS generates an export/import file and
an importing IRDS reads and processes that file. The ANSI IRDS standard specifies IRD export
and import commands that must be supported by a conformant IRDS. The rules governing IRD
export and import are defined by these commands. The standard also specifies the content of theexport/import fie by defining the IRD Schema which is used to describe IRD's. The format of the
export/import file is specified by the ANSI IRDS Export-Import File Format.

The ANSI IRDS standard defines the IRD Schema as an entity-relationship model consisting of
the Minimal IRD Schema and, optionally, the Basic Functional IRD Schema. The Minimal IRD
Schema supports administrative control of the IRD Schema and the IRD. All implementations of
the standard must include the Minimal IRD Schema. The Basic Functional IRD Schema extends
the Minimal IRD Schema and supports IRDS implementations by providing a "starter" technique
for describing an IRD. The standard allows extensions of the Minimal IRD Schema and specifies

Page 41

I
22 November 91 STARS-TC-04041/001/00

commands that may be used to modify the IRD Schema. In general, an implementation is allowed
to modify the IRD Schema, even the Basic Functional IRD Schema, as long as those modifications
do not conflict with the Minimal IRD Schema. Currently, ANSI Technical Committee X3H4, the
organization responsible for maintaining the ANSI IRDS standard, is working on the development
of a standard IRD Schema that could be used to describe models from a wide range of subject areas.
Subject areas under consideration include Data Flow modeling and Entity-Relationship modeling.

An export/import file consists of a header component, an IRD Schema component and an IRD
component. The header component identifies the exporting IRDS and the specific IRD within
that IRDS that was used to generate the export/import file. Additionally, the header component
includes the IRD export command parameters and commentary from the file's creator. The IRD
Schema component contains a partial description of the exporting IRDS' IRD Schema. This partial
description is sufficient for an importing IRDS to determine IRD Schema compatibility. The IRD
section contains the IRD being transferred. It may contain either the entire IRD conforming to the
given IRD Schema or it may contain a, possibly null, subset of that IRD.

The format of an export/import file is based on ISO 8824, Information Processing Systems -
Open System Interconnection - Specification of Abstract Syntax Notation One (ASN.1) and ISO
8825, Information Processing Systems - Open Systems Interconnection - Specification of Basic
Encoding Rules for Abstract Syntax Notation One (ASN.l). The ANSI IRDS Export-Import
Format provides an ASN.1 syntax used to describe the contents of an export/import file. The
draft proposed standard also provides rules, beyond those provided by ISO 8825, for encoding that
particular syntax.

Relevance to Asset Interchange ANSI IRDS and the ANSI IRDS Export-Import Format pro-
vide a reasonable mechanism for interchanging data models among asset libraries. The advantages
to this mechanism are conformance to ANSI and ISO standards, support for multiple IRD Schemas,
and the ability to represent any IRD Schema in the export-import file format. One disadvantage
to this mechanism is that the export-import file format assumes interchange between conforming
implementations of ANSI IRDS. Also, X3H4 is only just beginning work on a standard IRD Schema
that supports multiple subject areas.

ANSI IRDS and the ANSI IRDS Export-Import File Format do not provide any mechanisms for
interchanging data among asset libraries.I
7.3.2 Summary of the CASE Data Interchange Format

The CASE Data Interchange Format (CDIF) standards family is a product of the Electronic Indus-
tries Association (EIA). This standards family is composed of three draft standards: EIA-PN2387
CDIF - Framework for Modeling and Extensibility [CDI91a], EIA-PN2329 CDIF - Standardized
CASE Interchange Meta-Model [CDI91b] and EIA-PN2389 CDIF - Transfer Format Definition
[CDI91c]. This standards family supports the interchange of models among CASE tools by pro-
viding a standard technique for describing models and a standard representation for models. This
standards family does not address the interchange of data, it only addresses the interchange of
models.

Page 42

I
22 November 91 STARS-TC-04041/001/00

-- Approach A CDIF transfer occurs when an exporting tool generates a CDIF transfer file and an
importing tool reads and processes that transfer file. The CDIF standards family does not specify
interfaces for the importing or exporting tools. The standards family does specify the content and
format of CDIF transfer files.

The content of a CDIF transfer file is specified by the Standardized CASE Interchange Meta-ModelI(hereafter referred to as the CDIF meta-model). The CDIF meta-model consists of a semantic
meta-model and a presentation meta-model. The semantic meta-model can currently be used to
describe the semantics of Entity-Relationship models, Data Flow models, and data typing schemes.
The semantic meta-model is not limited to these 4ubject areas, however. The CDIF Technical
Committee, the component of the EIA that is responsible for the CDIF standards family, plans
to extend the semantic meta-model to include additional subject areas such as State Transition
Diagrams, Project Management and Object Oriented Analysis and Design. The presentation meta-
model describes how graphics are represented. This description is independent of any hardware
or software environment. Unlike the semantic meta-model, the presentation meta-model is not
composed of multiple subject areas. The current presentation meta-model can be applied to a wide
range of graphical notations.

IThe format of a CDIF transfer file is specified by the Transfer Format Definition. A CDIF transfer
file is composed of the transfer envelope and the transfer content. The transfer envelope identifies
the specific syntax and encoding used for that transfer. Currently, the Transfer Format Definition
includes a single syntax and a single encoding. The syntax is an extended version of BNF (Backus
Naur Form) and the encoding is a plain text representation of that syntax. The CDIF Technical
Committee plans to create additional, more compact encodings to support transfer via alternate
mechanisms such as inter-process communication. The transfer content conforms to the syntax and
encoding specified in the transfer envelope. The transfer content is composed of the header, the
meta-model section and the model section. The meta-model section identifies a version of the CDIF
meta-model and includes any exporter defined extensions to that meta-model. The information in
the meta-model section is used to describe the contents of the model section. The model section3 contains the model being transferred.

The extensibility features of the CDIF meta-model are specified by the Framework for Modeling
and Extensibility. This framework provides the meta-meta-model that is used to describe the
CDIF meta-model. An exporter may extend the CDIF meta-model in conformance to the CDIF
meta-meta-model. The extended meta-model, however, may not conflict with the CDIF meta-
model. The framework also defines the responsibilities of the importing and exporting tools when
interchanging models conforming to an extended CDIF meta-model.

U Relevance to Asset Interchange CDIF provides a reasonable mechanism for interchanging
data models among asset libraries. The advantages to this mechanism are support for multiple
subject area meta-models and existing specifications of 3 subject area meta-models. However,
CDIF is only a draft EIA standard and has not yet been proposed as an ANSI or ISO standard.
Also, the CDIF meta-model is extensive (and still growing) and CDIF does not allow conflicting
meta-models.

CDIF does not provide any mechanisms for interchanging data among asset libraries.

P
5 Page 43

!
22 November 91 STARS-TC-04041/001/00

7.3.3 Summary of IEEE P1175 Support for Data Interchange

The draft IEEE P1175 standard, A Standard Reference Model for Computing System Tool In-
terconnections [P11901, is a product of the IEEE Computer Society's Task Force on Professional
Computing Tools. The draft standard is composed of reference models for: tool to organization
interconnections, tool to platform interconnections and information transfer among tools. The
draft standard also includes the Semantic Transfer Language (STL). This summary will address
the reference model for information transfer among tools and the STL.

Approach The reference model for information transfer among tools describes the mechanisms
and a process for transferring information. The transfer mechanisms considered are transfer via
inter-process communication, via file, via shared data repository and via network communication.
The transfer process includes a "receiver beware" policy and descriptions of the send service and
the receive service needed to implement the process. The "receiver beware" policy states that the
sender transmits as much information as possible and that the receiver discards any information
that it does not need or understand. The reference model also identifies the need to represent the
semantics of the information being transferred. The STL is intended to satisfy this need.

The design goals for the STL are as follows: the language must be parseable, it must be easy to
read and write without special training or special tools and a transfer of information using the STL
must make efficient use of machine resources. To meet these goals, the STL uses a syntax similar

to natural language and the draft standard provides a technique for converting this syntax into a
more efficient representation. The STL syntax is described using a BNF notation.

The STL information packet is the unit of transfer for tools using the STL. This packet is composed
of an STL identification sentence, zero or more STL sentences and a packet end mark. The STL
identification sentence contains packet identification information such as the originator of the packet
and a timestamp. An STL sentence, the STL equivalent of a natural language sentence, consists of
exactly one subject and one or more clauses. Each clause is composed of a verb or verb phrase and
a direct object. Each clause expresses exactly one relationship to or attribute of the subject. The
subject of an STL sentence is restricted to defined concept names. Likewise, each STL clause must
include a defined relationship or attribute keyphrase. The draft standard includes concept names,
relationship keyphrases and attribute keyphrases that can be used to support various modeling
techniques such as entity-relationship modeling, data flow modeling, state transition modeling and
data typing. STL users may define their own concepts and keyphrases using the STL extensibility
mechanism.

Relevance to Asset Interchange IEEE P1175 provides a reasonable mechanism for inter-
changing data models among asset libraries. The advantages to this mechanism are a natural
language-like syntax and support for multiple meta-models. One disadvantage to this approach is
that the draft standard does not clearly distinguish between the supported meta-models and the
syntax used to represent those meta-models. Indeed, the draft standard does not even identify
which meta-models are supported. It merely provides examples of how the defined concepts and
keyphrases could be used to support various meta-models.

IEEE P1175 does not provide any mechanisms for interchanging data among asset libraries.

Page 44

22 November 91 STARS-TC-04041 /001/00

7.3.4 Other Standards

The standards evaluation activity is intended to be a comprehensive evaluation of standards that
may include data interchange capabilities applicable to the long term approach. Although the
sections above summarize the most applicable standards, other standards were also evaluated and
there are some standards that have yet to be evaluated.

The Portable Common Tool Environment (PCTE) [PCT90], A Tool Integration Standard (ATIS)
[ATI90] and the Standard for the Exchange of Product Model Data (STEP) fall into the category
of standards that have been evaluated. Summaries of PCTE and ATIS were not produced because,
although these standards both include well defined meta-models and data interchange services,
neither standard defines an external representation for its data. A summary of the STEP standard
was not produced because, although this standard is particularly applicable to data interchange, it
will not mature within the timeframe of ALOAF development. The current STEP standard is not
intended to address software products. A STEP standard that will address software products will
not be available for at least another two years.

The Hypermedia/Time-based Structuring Language (HyTime) [HYT90], Engineering Information
Systems (EIS) [EIS86] and the products of the Computer-aided Acquisition and Logistic Support
(CALS) program fall into the category of standards that have yet to be evaluated. Each of these
standards will be evaluated and their relevance to the asset interchange long term approach will be
determined.

7.3.5 Initial Conclusions

The first conclusion drawn from the evaluation activity is that a meta-model based approach to
data interchange is the correct approach. There is ample precedence in the standards community
for this conclusion. At least three standards, CDIF, ANSI IRDS and IEEE P1175, have chosen
this approach and two others, PCTE and ATIS, are likely to do so. The second conclusion drawn
from this activity is that there is a strong emphasis in the standards community on the interchange
of data models but only a weak emphasis on the interchange of data. In the standards evaluated
so far, thq r, are three formats that can be used to represent data models but none that can be
used to represent data. However, the standards evaluated represent the state of the art in data
interchange. Standards with a less sophisticated view of data interchange may provide adequate
formats for representing data. The final conclusion drawn from this activity is that the standards
community provides a large body of work on data interchange and that this work should be reused
in the development of the Asset Interchange Specification.

8 Services

This section provides the detailed definition of the ALOAF services first introduced in section 6.
This edition provides a listing of some proposed services with particular emphasis on the Data
Model services. In future editions, discussion within each of the service categories will be expanded
to include all of the core services in each category. The services are described from the points-
of-view of their interfaces, their basic behavior and possible error conditions noted during service

Page 45

22 November 91 STARS-TC-04041/001/00

execution. Eventually, all service categories will be developed into full language-independent service
specifications culminating in a proposed set of Ada package specifications of service categories and
individual services.

Asset library services exist at several levels (see figure 1 on page 2). Services apparent to a user
(including library administrators, system administrators, individuals looking for assets, and others)
can be provided by a combination of tools and facilities built into the library and its host operating
environment. ALOAF specifies a minimal set of core services which provide access to the library
and its contents. These services are intended to provide a host-independent interface to support
reuse tool portability across various heterogeneous environments, with minimal constraints on the
capabilities or design of any particular library implementation.

Extended services may be defined in future versions of this document for particular library products,
families, domains, etc. These services would provide access to capabilities that might not be
meaningful to all libraries. For example, a local project library may need more extensive provisions
for security, library access, extended search, transaction logging, etc. than the core services provide.

Even more complex services, such as graphical interactive browsing assistance, will be provided by
tools which use the ALOAF service interfaces defined here (as well as others available in the host
environment). These tools will vary from one environment to the next and may or may not be
considered part of a vendor's library product. The specification of such tools is beyond the scope
of the ALOAF.

The reader should note that several areas of ALOAF services which affect library management
activities have been deferred to later releases of the ALOAF. In particular, access control and
transaction processing have not been well developed. As a basis for conceptualization, our working

assumption is that changes to libraries, data models, etc. are "committed" (made permanent)
only upon successful completion of a Close operation for which the corresponding Open was made
explicitly for write access. All users are tacitly assumed to have full read/write access to all library
elements. These areas will be revisited in future editions of this document.

8.1 Library Management Services

This category includes services associated with accessing a pre-existing library, and with the estab-
lishment of a new library, using the structure of a data model that has been developed using data
model services.

Interfaces

Procedure: Open-Library
In: Library-Name: Name-Type
In: Read-OnlyFlag: Boolean
Out: Library.ld: Library.Id-Type

Procedure: Close-Library
In: Library-Id: LibraryId-Type
In: Abort-Flag: Boolean

Page 46

I
22 November 91 STARS-TC-04041/001/00

Procedure: GetAll.Libraries
Out: AILLibraries : Library-SetType

Procedure: InitializeLibraryIterator
In: Library-Set : Library-Set-Type
Out: Library-Iterator: LibraryIteratorType
Out: Iteration-Status : Iteraor.StatusType

Procedure: Next _LibraryFromIterator
In Out: Library.terator: LibraryIteratorType
Out: Nezt_Librar : LibraryId-Type
Out: Iteration-Status : IteratorStatus_-Type

Procedure: Get_.Library.-Name
In: Library-Id: LibraryIdType
Out: Library-Name : Name-Type

Procedure: Create.Library
In: Library-Name : Name-Type
In: DataModelId: ModelIdType
Out: LibraryM: Librarydd :Type

Procedure: Delete-Library
In: LibraryId: Library-Id-Type

Procedure: Rename-.Library
In: Librarild: Library.-IdType
In: NewLibraryName : Name-Type

Procedure: Get _LibraryDa a_.odel
In: Library.Id: LibraryId-Type
Out: Data.ModeLId: ModelId.dType

Description

The Open-Library procedure requests access to a pre-existing library named Library-Name. The

ReadOnly-Flag provides an indication to the system that write access and consequent locking will
not be required. The procedure returns a handle Library-Id which is used for further operations
on the library.

Close-Library terminates access to a library previously opened and assigned the handle LibraryId.
The Abort-Flag signals the system that all changes made by this user to the library since it was
opened are to be ignored; otherwise, they are committed to permanent storage. (This flag has no
effect if the library was opened with the ReadOnlyFlag set.

An ALOAF library installation may consist of several libraries all accessed via an ALOAF
service framework. Get-ll-Libraries produces the set of libraries in the system and re-
turns this set through the parameter All-ibraries. This set is used by the next two services,

Page 47

I
22 November 91 STARS-TC-04041/001 /00

IInitializeLibraryIterator and NextLibrary-romIterator, to provide a handle to each
library in the set in turn. (For a full discussion of iterators and their use, see the Class Services
subsection of the Data Model Services, which follow.)

The procedure Get-Library-Name returns the name of a library with a handle of Library-Id. The
handle may have been determined previously by Open-Library, by Create-Library, or by iterating
through a set returned by Get_.ll.Libraxies.

Create-Library reserves a Library-Name in the system name space and returns a handle Li-
braryId. The library name must be unique within the system name space. The library thus
"created" contains the structure of the data model identified by DataModeLId. (The data model
is presumed to have been created prior to the library using the Data Model Services described in
the next session. There is one data model per library.)

Delete.Library is the converse procedure. It removes the library, its data model, and all associated
asset descriptions from the system.

Rename-Library provides a way to change the name of a pre-existing library.

The GetLibrary.DataModel procedure returns the DataModel-ld of a data model associated
with the input LibraryId.

Errors

TED

18.2 Data Model Services

Assets in an ALOAF library are organized according to some conceptual scheme known as the
library data model. The library's data model consists of a description of the types of information
that are used to describe assets in the library. For example, if a library includes provisions for
searching by facets, key words, abstracts, author, release date, and so forth, the data model for
this library might provide the name of each facet, an enumeration of the allowable terms associated
with each facet, the number of characters allowed in a keyword, range of integer information,
format of date descriptors, and similar data-typing information. The data model also defines
relationships among assets such as between code and design or between organizations and authors
or implementors.

Since all data in the library must conform to the library's data model, basic changes to the data
model have the potential to affect the entire library. Thus once established, the basic core of a
library data model is expected to change infrequently.

Data Model services are provided to manipulate library data models in accordance with the ALOAF
meta-model (see section 7.1). The services presented in this section will be modified accordingly as
the ALOAF meta-model evolves.

jIn the service descriptions that follow, data model services are further broken down into the sub-

I Page 48

I
22 November 91 STARS-TC-04041/001/00

K categories:

1 * model definition services

e object class services

* attribute services

* relationship services

to coordinate the description of these services to the primary aspect of the meta-model that they
address.

The data model services are analogous to the commands to create and alter tables in a relational
database management system (RDBMS). That is, they deal with the basic structure of library
data, rather than with the data itself. This kind of activity is relatively infrequent, and carries
with it inherent hazards and restrictions. For example, deleting attributes or reducing the allowable
range of a numeric attribute could have global effects on data already stored-such actions may
require a major maintenance activity, such as regeneration of all or part of the library database.
(For libraries providing continuous 24-hour-a-day service, some means must be provided to commit
to the new model instantaneously.) On the other hand, adding attributes or increasing a numeric
range may not have such drastic implications. Because of the potential widespread effects resulting
from their use, many data model services and the tools that invoke them are most likely restricted
to system or library administrators.

Asset libraries are essentially databases whose elements are "software assets" and descriptive in-
formation. As with databases in general, the ways they can be implemented are limitless. For
example, a rudimentary library could be built in such a way that its "catalog" of descriptive infor-

mation is stored as formatted records in one or more library files. The data model for this library
would be embodied in the record structure definition statements in the source code of the library
tools themselves. Changing the data model for this library would require modifying those record
structure definitions and recompiling the library tools (plus a one-time operation to translate the
previous catalog to the new format). A more flexible library might implement its catalog in some
DBMS, and store its assets in a formal configuration management system like SCCS or CMS. Or,
some or all of the assets might be kept offline on tape or (in the case of documentation) on paper.
A future library design might consist of entries in a large-scale object management system, tightly
integrated with development tools, where assets may not even exist as unique distinguishable files
and the distinction between "assets" and "asset descriptions" becomes blurred.

In an integrated environment, the library data model could possibly be just one part of a system-
wide data model. While in some implementations, the ALOAF data model services may provide

access to the larger system-wide object manager, such implementation alternatives are not specifi-
cally addressed by the ALOAF. On the other hand, the concept of the library data model is broad
enough to include information other than asset-specific information. Examples of such information
that a library might wish to store could include: a count of library accesses; the definition of a local
accounting form; metrics which store search success rate or library revenues, and so forth. The
ALOAF service implementations should not artificially restrict the ability to define (and instantiate
and access) such information.

Page 49

22 November 91 STARS-TC-04041/001/00

Libraries which support continuous service will have a close tie between data model services and
asset location services, session services, and underlying SEE transaction and locking services to
allow a data model modification to be committed with minimal interruption. Editing, storage,
rename, etc. of the data model is closely related with the same operations on the asset descriptions
(see the Asset Description Services below).

In general, unless otherwise specified, all input parameters supplied to services are assumed to be
valid instances of the corresponding type of the parameter.

8.2.1 Model Definition Services

Interfaces

Procedure: CreateDataModel
In: ModeLName: Name-Type
Out: Modelid: ModelIdType

Procedure: OpenData.Model
In: ModeLName : Name-Type
Out: ModeL Id: Model-IdType

Procedure: Close.DataModel
In: ModeL Name : Name-Type
In: ModeLld: ModelId-Type

Procedure: DeleteData-Model
In: ModeLld : ModelId-Type

Description

The Create-Data-Model procedure returns a handle to a newly created empty data model through
the parameter Mode Ld whose name is given by ModeLName.

The OpenDataModel procedure returns a handle ModeLld to a data model in memory retrieved
by name ModeLName from the persistent store of available library data models.

Close-DataJHodel updates the model named ModelName in persistent store with the model ob-
tained from the handle ModeLId.

Given a handle ModeLld to a data model, Delete.DataModel will remove that model from memory.

Errors

The procedure CreateDataModel must note the error condition ModelAlreadyExists if a
model with the name ModeLName already exists within persistent store.

Page 50

I
22 November 91 STARS-TC-04041/001/00

If there is no data model with name ModelName, the procedure OpenDataModel must note the
error condition No-Model. In this case, the handle ModeLld will be null.

ICloseData-Model always succeeds. If no model with the name Model-Name already exists, it is
written to persistent store for the first time; otherwise the model with this name is overwritten
with the new model referenced by ModelId.

The procedure Delete-DataModel always succeeds.I
8.2.2 Object Class Services

IInterfaces
Procedure: Create-Class
In: NewClassName : Name-Type
Out: New-Class: Class-IdType

Procedure: Delete-Class
In: Class-ld: ClassIdType

Procedure: GetClass-Name
In: ClassId: ClassIdType
Out: Class-Name : Name-Type

Procedure: Rename-Class
In: Current-Class: ClassIdType
In: NewClass-Name : Name-Type

I Procedure: GetAllClasses
In: ModeLId: ModelIdType
Out: AILClasses: ClassSetType

Procedure: GetChildClasses
In: Modelld: ModelIdType
In: CurrenLClass: ClassIdType
Out: Child-Classes: ClassSetType

Procedure: GetAllSubclasses
In: Model-ld: Model-IdType
In: CurrentClass: ClassIdType
Out: All-SubClasses: ClassSet_Type

Procedure: GetParent-Class
In: ModeLld : ModelIdType
In: CurrentClass: ClassIdType
Out: ParentClass: ClassIdType

IPage 51

22 November 91 STARS-TC-04041/001/00

Procedure: GetAllSuperclasses
In: ModeLld: ModelIdType
In: CurrentClass: ClassIdType
Out: All.Super_Classes: Class-SetType

Procedure: InitializeClassIterator
In: Class-Set: ClassSetType
Out: Class-Iterator: ClassIteraorType
Out: Iteration-Status : IteraorStaus-Type

Procedure: NextClassFromIterator
In Out: Class-lterator: ClassIteratorType
Out: NeztClass: Class..IdType
Out: Iteration-Status : IteratorStatusType

Procedure: NextClassBy-NameFromIterator
In Out: Class-Iterator: Class.IteratorType

- In: Class-Name : Name-Type
Out: NeztClass: Class-IdType
Out: Iteration-Status : IteratorStatus_-Type

Procedure: Add-Class
In: ModeLId: Nodel-IdType
In: Parent-Class: ClassIdType
In: Child-Classes: ClassSetType
In: NewClassName : Name-Type
In: New-Class: ClassIdType
Out: ModeL-UpdateStatus : Model-StatusType

Procedure: Remove-Class
In: ModeLId: KodelIdType
In: Parent-Class: ClassIdType
In: ChildClass-Name : Name-Type
Out: Removed-Class: Class.IdType
Out: ModeL UpdateStatus : Model-StatusType

Description

The Create-Class procedure returns a handle through the parameter New-Class to a newly created
class whose name is given by the parameter NewClassName. This class is not associated with anyU-- data model. Classes must be created before they can be used with a data model. Delete-Class
removes all memory associated with a class. Classes should be destroyed after they have been
removed from a data model.

Given the class handle Class-Id, the procedure GetClassName returns the name of the class via
the parameter Class-Name. The procedure Rename-Class renames the class identified by Class-Id
with the name New.ClassName.

Page 52

I
22 November 91 STARS-TC-04041/001/00

I GetAllClasses produces the set of classes in the data model identified by ModeLld and returns
this set through the parameter AllClasses.

I Get.ChildClasses returns the set of all classes that are direct descendents of the class identified
by the parameter CurrenLtClass within the data model identified by ModeLld. The set is returned
through the parameter ChildClasses. The procedure GetAllSubclasses is the logical general-
ization of GetChildClasses wherein all descendents, whether they are direct or indirect, of the
class identified by CurrentClass are returned through AllSubClasses.

I The procedure GetParent-Class and its generalization GetAll-Superclasses are inverses to the
preceding two services in that they return a class or set of classes that are ancestors to the class
identified by CurrenLClass. The first one collects only the immediate the parent of this class,
while the second one retrieves all ancestor classes, both direct and indirect, through the parameters
ParentClass and All-Super. Classes respectively.

The next three services provide the means to process sets of classes through the use of ex-
plicit iterators. Through iterators, it is possible to process all members of an unordered collec-
tion sequentially, obtaining each set member exactly once. First an iterator must be initialized
(Initialize-ClassIterator) so that it is able to process the set from some logical starting posi-
tion. Class-Set provides the set to be iterated over; the two output parameters return the iterator
structure Class-lterator (to be used by the other iteration services), and a status variable Itera-
tionStatus to monitor the progress of the iteration. The latter parameter is discussed more fully in
the Errors paragraph given below. The next two services enable successive processing of members
of a set of classes. Each of them maintains the current state of the iterator via Class-Iterator.
Next_-Class-FromIterator gets the next class from the set and returns it through NertClass and
notes the iteration status. Next-Class_-By.ame-FromIterator will advance the iterator until a
set element is found with the name supplied through Class-Name, or until the end of the set is
reached. Iteration-Status is updated as necessary.

The next two services address the processing of classes in the context of a given data model which is
supplied through the parameter ModeLld. Add-Class identifies specific classes in the model as the
parent and child classes for a new class NewClass to be placed within the model. If there are no
errors (cf. the Errors section below) in these parameters, the model is updated by the insertion of
the new class. The status parameter ModeL-UpdateStatus will indicate a successful model update
or note one of a number of error conditions. Remove-Class is the inverse operation to the addition
of a class. It is restricted, however, in that only "leaf" classes can be removed. That is, a class to be
removed can have no subclasses of any kind. All links from the class ParenLtClass to the removed
class are broken. The indicator parameter ModelUpdateStats will identify any problems noted
with the removal.

Errors

ServiceCreateClass must note the error NoStorage-Found if there is insufficient storage to
hold a new class. Delete-Class must note the error NoStorageFreed if the storage occupied
by the class Class.Id could not be released.

Services GetClassName, Rename-Class and Get.AllClasses always succeed, assuming that the
input parameters are valid. GetAllClassaes will return a null set if the model has no classes.

Page 53

22 November 91 STARS-TC-04041/001/00

The four services obtaining sub- or superclasses of a given class must note the error NotInModel
if the specified class is not contained in the data model accessed by ModelId. Otherwise these
services will always succeed, though they may produce a null set.

The iterator services all depend on a particular iterator storage structure. Any problems within
these services in accessing or initializing this structure must note the condition InvalidIterator.
In addition, certain noteworthy status indications about iterators should be provided through Iter-
ationStatus. InitializeClassIterator will set Iteration-Status to Set-Empty if the iterator
structure was successfully initialized but the set to be iterated over is empty. Otherwise, successful
initialization will set Iteration-Status to First-Element. Executions of either of the iterator forms
producing the next element in a set must set the parameter Iteration-Status to Set.Empty when
the end of the set is reached. In this case, the output parameter NeztClass will be the null set.
Otherwise, Iteration-Status must be set to Next-Element and NeztClass will reference this next
element.

The parameter Model-UpdateStatus is used to record the the status of various operations that
potentially cause changes to the model. In general, it is assumed that the parameters to these
operations are meaningful; e.g., class sets are not empty and class parameters denote legal classes.
For example, successful completion of Add-Class will set ModeLUpdateStatus to Class-Added
and successful completion of Remove-Class will set the parameter to Class.Removed. Conversely,
unsuccessful executions of these services will set ModelUpdateStatus to ClassNotAdded and
ClassNot-Removed respectively. Add-Class will fail if there already is a class with name
NewClass.Name as a child of the class ParentClass (or a class with that name which is a par-
ent of any members of the set Child-Classes). The service Remove-Class will fail if there is no
class with name Child- Class-Name as a child of the class ParentClass or if the class identified by
Child-ClassName has any subclasses itself, or any asset descriptions which are identified with this
class in the model. Thus a class to be removed must be essentially empty and at the frontier of the
data model. In the case of unsuccessful operations, the model is not updated so that the outgoing
parameter NewModeLId will be identical to ModeLId.

8.2.3 Attribute Services

Interfaces

Procedure: CreateAttribute
In: AttrName : Name-Type
In: AttrSpec: AttrSpecType
Out: Attrld: AttrIdType

Procedure: GetAttributeName
In: AttrId: AttrIdType
Out: AttrName : Name-Type

Procedure: GeotAttribute-Spec
In: AttrId: AttrIdType
Out: AttrSpec: AttrSpecType

Page 54

22 November 91 STARS-TC-04041 /001 /00

U Procedure: Get.All-Class-.Attributes
In: Class1d: Model-Id-Type3 Out: AlL~ttrs : Attr.Set.Type

Procedure: GetIll-Local.Attributes3I: Classi1d: Modeld-T.ype
Out: LocaL-Attrs : Attr.Set-Type

I Procedure: Get..Allnherited.Attributes
In: Classi1d: Mkodel-Id-Type3 Out: Inheiited..Attrs : Attr-Set-Type

Procedure: Add~ttribute
In: Class-Id: Class-.Id-Type

In: New-.Attr..Id: Attr.Id-Type
Out: New..ClassId: Class-Id-.Type
Out: Class- Update-Status : Class-Status.Type

Procedure: Remove.Attribute
In: Class-Id: Class-IdType

In: Attr-To-Remove: Attr-IdType
Out: New..ClossId: Class..Id-Type3 Out: Class.. UpdateStatus : Class..Status-Type

Procedure: Get-Classes-WitkLAttribute3In: Modeld: Modl-Id-Type
In: Attr-Id: Attr.Id-Type
Out: Classes- Wit h-Attr : Clas s.Set..Type

Description

TBD

I Errors

3 TED

3 8.2.4 Relationship Services

TED

3 Page 55

I
22 November 91 STARS-TC-04041/001/00

8.3 Asset Description Services

Asset descriptions consist of class instances, known as objects, and relationship instances, known as
links. The asset description services described below focus on managing and manipulating objects;

*- the link-related services are yet to be defined.

When creating a new asset description it must be determined which objects must be created to
describe the asset and, for each object, determine which class of the classification scheme is the
best fit for the object being classified. Each object is instantiated from the appropriate class, called
the associated class, which defines a set of attributes for which data values can be supplied. Each
attribute is stored using a unique attribute identifier and it is paired with an appropriate type of
value. The set of attribute/value tuples effectively determines characteristics of the object. After
all the correct data values have been supplied, each asset description object can be catalogued,
making them available for browsing and searching.

Asset description services are provided to create, delete, inspect, and update objects and links. As
stated earlier, the data model services are analogous to the commands to create and alter tables
in a relational database management system. That is, they deal with the basic structure of library
data, rather than with the data itself. The Asset Description Services deal with data values and
are used to create, delete, modify, browse, and retrieve the asset descriptions stored in the library.
Asset description services are similar to adding, deleting, and modifying the rows of a table in a
relation database management system.

An asset description object is created with an associated class that defines the set of attribute
identifiers that comprise the object. The associated class contains a set of attribute identifiers that
have been defined or inherited from a superclass. The object contains a set of attribute/values
through which the value of each attribute identifier for the object is accessed. For each attribute
identifier there may be an associated value. The values that are stored for each attribute of the
asset description must match the type specified by the corresponding attribute definition.

Example: The Common Data Model defines a class called Person with attributes Name, Address,
Telephone-Number, ElectronicMail-Address, and IsContactFor. When an object of class Person
is created, the new object contains a set of attribute/values tuples that contains an entry for each
attribute defined by Person and its superclasses. The attribute values of the object can be accessed
by the object identifier and the attribute identifier. Accessing the Name of the Person is performed
by specifying the object identifier and the attribute identifier for the Name attribute. The string
value of the name attribute is returned.

8.3.1 Object Services

Interfaces

Procedure: Create-0bject
In: Associated_ Class: ClassIdType
In: Class-Name: String
Out: New-Object : ObjectIdType

Page 56

22 November 91 STARS-TC-04041 /001/00

Out: Object- Update-Status : Obj ect -St atus -ype

Procedure: Destroy-Obj oct
In: Objectild: Object-Id.Type
Out: ObjectUpdateStatus: Objeoct -.Status.-Type

Procedure: Get.AttributesFor-Isset
In: Objectld: Obj ect-.Id-.TypeIOut: Attributes-d-List: Attr.List.Type
Out: ObjectUpdateStatus : Obj Oct-Status.Type

Procedure: Get-Attribut e.Boolean-Value
In: ObjecL.Id: Obj ect.Id-.Type
In: AttributeId : Attr-d-TypeI Out: Attr..Value : Boolean
Out: Object-Update-Status : Obj ect..St atus-.Type

U Procedure: Get...Attribut e.nt eger.3alue
In: ObjectlId: Object-.Id-.Type
In: Attributei'd: Attr-dType

Out: Attr Value : Integer
Out: Object- Update-Status : Obj ect-Status.Type

Procedure: Got...Attr ibut eString.Value
In: ObjectId: Obj ect.Id.Type
In: Attribute-d: Attr-Id-Type
Out: Attr..Value : String
Out: Object- Update-.Status : Object-.Status-Type

Procedure: Get .Attr ibut e-lo at -Value
In: ObjectlId: Obj ect-Id-TypeIIn: Attributeid : Attr-IdType
Out: Attr. Value : Float
Out: ObjectUpdateStatus : Object-.Status-Type

Procedure: Get-Attribute-Time-.Value
In: Object-Id: Obj ect-Id-TypeI In: Attribute-d: Attr-.Id-.Type
Out: Attr Value : Time
Out: Object- UpdateStatus : Object-Status-Type

Procedure: Set-Attribute-Boolean-Value
In: ObjecL.Id: Object-Id-Type

In: Attyibute-d: Attr-.Id-.Type
In: Attr Value : Boolean
Out: Object-Update-Stattss : Object-Status-Type

Page 57

m
22 November 91 STARS-TC-04041/001/00

m Procedure: SetAttribute-IntegerValue
In: Object-ld: Obj ectIdType
In: AttributeId: Attr-Id-Type
In: Attr_ Value : Integer
Out: Object- Update-Status : Obj ectStatusType

Procedure: SetAttributeStringValue
In: Object-ld: Obj ectIdType
In: AttributeId : AttrIdType
In: Attr_ Value : String
Out: Object- Update-Status : abj ectStatusType

Procedure: Set_-AttributeTimeValue
In: ObjectId: ObjectIdType
In: Attribute-Id : AttrIdType
In: AttrValue : Time3 Out: Object. UvdateStatus : Obj ect.StatusType

Procedure: Set.Attribut e-Float_-Value
In: Object-Id: Object-IdType
In: AttributeId : AttrIdType
In: Attr_ Value : Float
Out: ObjectUpdateStatus : Obj ectStatus-Type

Procedure: Get-AttributeValueslForObj ect
In: Object-ld: ObjectIdType
Out: ObjectData : Object._Definition
Out: Object- Update-Status : Obj ect-Status_-Type

Procedure: Get-AssociatedClass
In: Objectld : ObjectIdType
Out: Associated_ Class : ClassIdType
Out: Object- UpdateStal as : Obj ectStatusType

Description

In this section, descriptions are given to ixplain the important features of each service. Unless
otherwise specified, all input parameters supplied to services are assumed to be valid instances of
the corresponding type of the parameter.

The Create-Object procedure retu:ns a handle to a newly created object through the New-Object
parameter. This handle references a set of attribute/value tuples composing the the object. Each
tuple corresponds to one attribute that is inherited or defined by the AssociatedClass, Initially,
blank or default values are entered for each value in the set. The Object-Name specifies the name
for the object. This name must be unique within the all objects that are associated with the
AssociateCla.s. The success of the procedure is returned in Object. Update-Status.

Page 58

22 November 91 STARS-TC-04041/001/00

The Destroy-Obj ect procedure removes the object from the library and removes all memory as-
sociated with the object. The success of the procedure is returned in ObjectUpdateStatus.

The GetAttributesFor_0bject procedure returns the set of attributes from the attribute/value
set. This set is identical to the list of attributes defined and inherited for the associated class of
ObjectId.

Each object contains a set of attribute/value tuples that describe the object. The values of the
attributes can be different types. There is a service provided to get and set attribute values
for each of the different types of attributes. For example, the Get-AttributeIntegerValue
procedure returns in Attr.Value the integer value of the Attribute for the ObjectId while the
Set -AttributeBooleanValue procedure sets the Boolean value of the Attribute-Id to Attr_ Value
for the Object-ld. The success of each of these services is returned in Object- Update-Status. Each
of the other Get- and Set- services perform similarly.

The Get.AttributeValuesForObj ect procedure returns a list of all the attribute/value tuples
for an object. This service is a convenience to be used when all attributes/values for an object are
required, This service request replaces looping over all the attributes and submitting a request for
the value of each attribute. The success of the procedure is returned in Object-UpdateStatus.

The GetAssociatedClass procedure returns the class definition that is associated with the object.
The associated class is set when the object is create.

Errors

Services Create-Object must note the error No-StorageFound if there is insufficient storage
to hold a new object. If the Associated-Class is not a valid class identifier the error Associ-
atedClassDoesNotExist is returned and the object is not created. If the Object-Name is not
unique for all object associated with Associated-Class the then NameNotUnique is returned.

Destroy-0bject must note the error NoStorageFreed if the storage occupied by the class
Object-Id could not be released. Destroy-Object returns the error ObjectDoes-Not-Exist if
Object-Id is not a handle of a valid object.

GetAttributes.ForObj ect notes the error ObjectDoesNotExist if the handle of ObjectId
is not the handle of a valid object.

There is a service provided to get and set the values for each different type of attribute.
Each of these services return the same error messages. If the ObjectId is not valid the er-
ror ObjectDoesNotExist is returned. When the AttributeId is not valid the error At-
tributeDoesNotExist is returned.

When the ObjectId is not valid the service Get-AttributeValues.ForObject returns the error
Object _DoesNot -Exist.

I Page 59

22 November 91 STARS-TC-04041 /001/00

8.3.2 Link Services

TBD

8.4 Session Services

This section describes how to initiate access to asset libraries. All library interaction is within the
context of a session, which establishes the resources available for use by a client application. (It
is presumed for this discussion that a "client application" and its resources are associated with
a single user operating within the context of a single operating system process.) When a session
is terminated, all resources are returned. An application can have only one session open at a
time (however, some library implementations may have sessions active simultaneously for different
users).

Interface

Procedure: Open-Session
In: User-Id: UserId-Type
Ot: SessionId: SessionIdType

Procedure: Close-Session
In: Session-Id: SessionIdType

Description

The OpenSess ion procedure establishes a session and returns a handle Session-Id which is a unique
identifier for the session. All subsequent library access is done in the context of this session. The
User-Id is provided to the user by prior arrangement with the librarian or system administrator; it
may be used in conjunction with library-specific access controls beyond those available via the host
SEE security provisions. A null value may be supplied; this provides whatever access is associated
with the user's system login or a system default for public access. Conformant implementations
may require that any existing session be terminated before a new one is initialized.

The Close-Session procedure ends a session and frees resources associated with it. Element
handles returned during the session are no longer valid.

Errors

The procedure Open-Session may return the condition InvalidUserId if an unknown UserId
was supplied or if it was null and the library provides no default access. Open-Session returns the
condition Session-NotOpened for any other error in attempting to start a session. Any error
in initiating a session returns a null SessionId; the session is not started and no resources are
allocated.

The procedure Close-Session returns the condition Session-NotClosed for any error encoun-
tered during session termination.

IPage 60

22 November 91 STARS-TC-04041 /001/00

8.5 Query Services

The query services provide a means to search a library's data model (and consequently the asset
descriptions) in accordance with a set of criteria. One problem to be solved here is that the tool
which transmits the search criteria (an interactive browser, for example) will generally have little
a priori knowledge of the structure of the data model used by the library being searched, while
truly seamless operation requires as little human intervention as possible to discover that structure.
However, search tools can take advantage of the universal meta-model upon which ALOAF libraries
are constructed.

The response to a query is a list of class and/or object id's which can be accessed one at a time
and used in further queries or in a request to view (parts of) an asset. Queries may be iterative,
with a library user supplying successively stronger criteria to refine a search until a set of assets of
interest is identified.

One possible approach to query services is to provide a query language specification along with a
general query language processing service. Such a service must be able to produce sets of class
and/or object id's which have the properties determined by a given query language expression.
With this approach, the basic decisions that must be made in defining the query services deal with
the syntax and semantics of the query language.

In this context, various kinds of queries can be performed. One is a boolean query. Another query
is an information retrieval query where words or phrases are searched for in text attributes. These
information retrieval searches can be enhanced by extending the search to related terms, synonyms,
broader terms, and narrower terms. The selected query language(s) should allow the user to be
able to specify any of these searches.

Another approach is to provide a standard set of information retrieval services. Such operations
can be broadly defined as:

" get class ids

" get object ids

These operations return a list of class or object id's in response to a generalized query that includes
classification terms, text-in-context and other attributes, specified as regular expressions. The
various forms of the get operation are expressed in terms of query qualification parameters which
set bounds for the search for relevant classes or objects. The form of such query "templates" is
highly dependent on a library's meta-model. The semantics (or interpretation) of the results of a
query are in turn dependent on a library's data model.

A specific approach to the ALOAF query services has not yet been chosen. The specific services
and associated query language(s) will be specified in a future edition of the ALOAF.

8.6 Asset Location Services

Asset location services enable the examination and, consequently, transfer of assets from a library
to a user or tool. Services here must deal with what and how much may be shown/transferred

Page 61

I
22 November 91 STARS-TC-04041/001/00

to whom and what side effects may occur as a result. For example, transfer of an asset may
occasion some check for user statis (security check, fees paid, release waiver acknowledged, etc),
may imply a search through ofline storage and physical handling/mailing of alternate media, and
may trigger accounting activities to support such things as notification of upgrade availability or
product recalls. Note that such events as these will be handled by tools built using ALOAF services
and not by ALOAF functions themselves. This implies that different parts of an asset could have
different relative values-for example, a commercial library service may make text descriptions and
abstracts available to anyone for "free," but source code, design description documents, and user's
manuals would require payment of a fee, assigned by the library administration.

Some general kinds of services in this category include:

* locate asset

* send asset request

Locating an asset means that its system 'address' (or the equivalent if the actual asset is not
available electronically) is provided to allow the user or tool to access an asset. In the case of assets
that are not directly available, asset request services provide the means to eventually obtain an
"off-line" asset.

The ALOAF does not restrict libraries to specific styles and methods of providing access to assets
themselves. It may be the case that no assets are made available directly-all asset requests require
some off-line action to take place. Conversely, a library may contain all of its assets in an on-line
archiv?.

8.7 Metrics Services

Services which control the collection and disposition of statistical information are in this category.
Libraries will generally be expected to collect information on assets and their usage and to make
some portion of the information available to users and administrators.

Metrics services include:

* request metrics list

* read metric value

* store metric value

Requesting a metrics list will return a list of available metrics associated with some current user
context. Thus metrics list services will require object id's and user id's as input parameters. Once
a metric item has been found, its value can be provided. Users probably cannot store metric values
directly, but the tools they use may do so-e.g., locating an asset may increment an access 'hit'
counter which is maintained by the library.

Page 62

22 November 91 STARS-TC-04041/001/00

8.8 Access Control Services

Access control services help maintain the wide variety of restrictions that may be placed on assets
and on users either legally or by policy. Primary reliance will be placed on the access control
services provided by the underlying SEE. However, library assets demand some additional consid-
eration arising from the varied sources of assets and their relatively long persistence. In general,
library assets will come encumbered with a variety of restrictions reflecting the ownership rights
of the originating organization and, potentially, each subsequent modifying organization. The en-
cumbrances may not be homogeneous-an asset may be free to one organization (Company X,
who has paid for unlimited rights to updates) or class of organization (educational institutes) and
not available to yet another class (nonpaying browsers, company competitors, etc.); some parts of
assets will likely be open to anyone (text abstracts) and others variously restricted (source code,
users' manuals). Libraries must also be able to maintain and enforce restrictions on imported assets
and to forward the same restrictions (perhaps with others added) when assets are exported.

Some sample access control services include:

* create acl

e assign entity to acl

* delete acl

Note that the preceding list of services suggests the use of Access Control Lists (ACLs) to control
library access. This approach may be replaced by a more general approach in the future. It is likely
that an access control policy will be part of a library's data model, so that general access control
service descriptions will be provided in terms of the ALOAF meta-model.

9 Conformance

The ALOAF defines a collection of services and specifications that not all library systems may be
able to fully support. There are likely to be a variety of ways in which a library system can conform
to the ALOAF. While we have not yet fully analyzed this issue, we have reached some preliminary
conclusions.

Conformance can be considered from the viewpoint of the quantity of services provided, the quality
of services provided, and the mode in which services are provided. Each of these views can be
considered a different conformance dimension. Within each of these dimensions, there are likely to
be several different classes of conformance (which may be viewed as levels of conformance if there
are hierarchical gradations between classes). Although the conformance dimensions are not strictly
independent, they provide a convenient framework for discussing conformance issues.

Page 63

22 November 91 STARS-TC-04041/001/00

9.1 Conformance Dimensions

Service Quantity

This dimension addresses the amount of ALOAF services a particular library system supports.
A minimal conformance level within this dimension may be one in which no ALOAF-conformant
programmatic services (per section 8) are available, but asset import and export capabilities in
accordance with the Asset Interchange Specification in section 7 are supported. Beyond this mini-
mal level of conformance, the Service Quantity dimension will likely be shaped by specifying both
a set of core ALOAF programmatic services and a set of extensions to those core services. Every
library system purporting to provide ALOAF-conformant programmatic services must then provide
at least the core services, and the Service Quantity of such systems will then be characterized by
which of the extensions (if any) they provide.

In future versions of this document, the Services section will identify both core and extended
services, and the extended services will be classified appropriately to define specific conformance
classes. It is possible that entire service categories will be considered extended services, but it is
more likely that particular collections of services within (and possibly across) the categories will be
identified as extensions. For example, if the ALOAF meta-model has core and extended portions,
the extended portions will be reflected in a set of extended services within at least the data model
and asset description service categories. Other potential candidates for extended services may
include metrics services, access control services, and some library management, session, query, and
import/export services.

Service Quality

This dimension exists in recognition that different library systems may provide some services with
varying degrees of quality or engineering sophistication. The focus in this dimension is on issues
that are related to what are typically referred to as non-functional requirements. These can include
time and space efficiency, assurance and reliability, availability, and environmental context, among
others. However, the emphasis will be on factors that have practical impact on a library system's
ability to meet functional ALOAF requirements.

Some specific library system issues that may be addressed by this dimension include:

" the communications, processing, and storage performance factors affecting the system's ability
to provide remote sites with direct on-line access to programmatic services, and thus affecting
the Service Quantity that the system can practically deliver (not just make available) to
remote clients,

" the overall assurance level of the system and its underlying operating system or software
engineering environment in support of data security/integrity services and general system
reliability, and

* the characteristics of the system and its underlying environment that impact library capacity,
library availability, error recovery, connectivity with other libraries, etc.

Page 64

22 November 91 STARS-TC-04041/001 /00

Service Mode

This dimension addresses the interface or service modes in which a library system presents services
to client applications. The two major interface modes that the ALOAF may eventually address are
procedural and protocol modes. A library system supporting a procedural interface mode provides
services through language (e.g., Ada) bindings requiring the client application to be linked and
loaded with the system software at run time. A library system supporting a protocol interface
mode provides services via a message-passing commuuications protocol enabling an asynchronous
client-server relationship between the application and the system. The protocol interface mode is
considered the more general of the two; client applications in this mode can interact directly with the
server via the communications protocol, but they more typically interact via a procedural binding
to communications services supporting the protocol that simulates a direct procedural interface
from the application's viewpoint. The ALOAF will initially support the procedural interface mode
by defining an Ada programmatic interface to ALOAF services, but a longer term goal is to define
an underlying protocol interface to more directly address the long-term ALOAF goal to support
seamless interoperability of distributed, heterogeneous libraries.

Note that this dimension may be related to the Service Quantity dimension in that differing quanti-
ties of services may be provided by a library system in the two interface modes. It may also impact
the Service Quality dimension from a performance perspective.

9.2 ALOAF Conformance Plans

Future versions of this document will more clearly define the conformance dimensions, define spe-
cific conformance classes within those dimensions (e.g., by defining a set of extended services and
mapping them to Service Quantity conformance classes), and define criteria for determining con-
formance in each class. It might prove useful to define an alternative view of the conformance
classification scheme by aggregating conformance classes in various dimensions into a set of overall
ALOAF conformance classes (for example, a library system exhibiting Service Quantity A, Service
Quality B, and Service Mode C might be said to be in overall ALOAF conformance class X).

However, the intent of this effort will be strictly to establish a useful classification scheme for
libraries with respect to their ability to provide ALOAF capabilities. It is beyond the scope of the
current ALOAF effort to provide methods and tools to assess, validate, or enforce the conformance
of any particular library.

Page 65

I
22 November 91 STARS-TC-04041/001/00

10 References

[ATI90] Specification for A Tool Integration Service (ATIS). CASE Integration Services Com-
mittee, November 1990. CIS Base Document V1.0.

[Boo9l] Grady Booch. Object-Oriented Design with Applications. Benjamin/Cummings, 1991.

[CD90] Edward R. Comer and Cameron M. Donaldson. Product Definition Document for the
Automated Reusable Components System (ARCS). Software Productivity Solutions,
Indialantic, FL, October 1990. Volume 1: System Description.

[CDI91a] CDIF - Framework for Modeling and Extensibility. Electronic Industries Association
(EIA) CASE Data Interchange Format (CDIF) Technical Committee, April 1991. Draft
Interim Standard Version 1.40 EIA-PN2387.

[CDI91b] CDIF - Standardized CASE Interchange Meta-Model. Electronic Industries Association
(ElA) CASE Data Interchange Format (CDIF) Technical Committee, April 1991. Draft
Interim Standard Version 1.40 EIA-PN2329.

[CDI91c] CDIF - Transfer Format Definition. Electronic Industries Association (ELA) CASE Data
Interchange Format (CDIF) Technical Committee, April 1991. Draft Interim Standard
Version 1.40 EIA-PN2389.

[Ear90] Anthony Earl. A Reference Model for Computer Assisted Software Engineering Envi-
ronment Frameworks, August 1990. Version 4.0 ECMA/TC33/TGRM/90/016.

[EIS861 Requirements for Engineering Information Systems. Institute for Defense Analyses,
Alexandria, VA, July 1986.

[HYT90] Hypermedia/Time-based Structuring Language (HyTime), September 1990. ANSI
X3V1.8M/SD-7 (HyTime) Seventh Draft.

[IRD88] Information Resource Dictionary System (IRDS). American National Standards Insti-
tute (ANSI), October 1988. ANSI X3.138-1988.

[P1190] A Standard Reference Model for Computing System Tool Interconnections. IEEE
Computer Society Task Force on Professional Computing Tools, October 1990. Draft
P1175/D7.

[PCT90] Portable Common Tool Environment (PCTE) Abstract Specification. European
Computer Manufacturers Association (ECMA), November 1990. Final Draft
ECMA/TC33/90/78.

[RIG91] Charter of the Reuse Library Interoperability Group, May 1991.

[STA91a] STARS Reuse Concept of Operation, August 1991. Version 0.5, Unisys CDRL Sequence
No. 03725/001/00, Publication Number GR-7670-1251.

[STA91b] STARS Vision, May 1991. Version 0.1.

[SWT89] J. Solderitsch, K. Wallnau, and J. Thahamer. Constructing Domain-Specific Ada Reuse
Libraries. In Proceedings, 7th Annual National Conference on Ada Technology, March

I 1989. pages 419-433.

IPage 66

22 November 91 STARS-TC-04041 /001/00

Part IV

Appendices

I A Glossary

I ASSET Any unit of information of current or future value to a software-intensive systems devel-
opment and/or PDSS enterprise. Assets may be characterized in many ways including as
software-related work products, software subsystems, software components, contact lists for
experts, architectures, domain analyses, designs, documents, case studies, lessons learned,
research results, seminal software engineering concepts and presentations, etc.

3 ASSET CATALOG The collection of asset descriptions which an asset library maintains about
its assets, as well as the data model by which the library is organized.

ASSET DESCRIPTION The information about an asset that is kept by the library in the
context of the library's data model. This is generally the information provided to a library
user in response to a query. It is the information made available to assess the suitability of
an asset to fulfill whatever purpose the requestor has in mind.

ASSET INTERCHANGE The act of transferring one or more assets from one asset library to
another. The STARS view is that this includes the capability to transfer asset descriptions in
a library-independent representation. The data model that describes this representation may
be understood, as in the case of the Common Data Model, or may be explicitly transferred
as part of an asset interchange.

COMMON DATA MODEL A representation of information that is commonly main-
tained by some asset libraries using the STARS library mechanisms. The Common
Data Model supports a rudimentary asset interchange capability which is the basis for
the STARS short-term interchange approach.

DATA FORMAT The Asset Interchange Data Format is an asset library-independent rep-
resentation of library data models and data. It provides a long-term, meta-model-based
approach to library asset interchange.

ASSET LIBRARY A collection of software assets controlled by an asset library system. Typi-
cally, asset libraries are implemented using an asset library system, which is a computer-based
system designed to facilitate the reuse and sharing of software assets. Asset libraries provide
a set of services that support qualifying, reusing, and managing software assets.

AUTOMATED REUSE ASSET LIBRARY An asset library with automated tools and
services that facilitate operations such as search/query/browse, asset interchange, and
interoperation with other libraries and with reuse tools.

DISTRIBUTED ASSET LIBRARY (1) A single library with an on-line database of
asset descriptions and/or assets residing on two or more physically distinct computers.
(2) A logically single library which consists of independent sublibraries, each of which
may be "distributed" according to sense (1) above. (3) An affiliation of logically distinct

Page 67

I
22 November 91 STARS-TC-04041 /001/00

asset libraries to accomplish some common purpose. The term "distributed" often carries
the connotation that the various libraries and databases are geographically separated,
sometimes by global distances.

HETEROGENEOUS ASSET LIBRARY A library with dissimilarities among its com-
ponents. Especially, a distributed library having dissimilarities in computer platforms,
operating systems, database or object management systems, and library data models
and mechanisms.

DISTRIBUTED, HETEROGENEOUS ASSET LIBRARY An asset library that is
implemented across distributed, heterogeneous computer platforms and contains hetero-
geneous asset data models.

FILE SYSTEM ASSET LIBRARY An asset library whose implementation is based on
file system facilities providing management of assets as files in a directory hierarchy with
file name searching, intra-file pattern matching searching, and access control based on
the file system facilities.

FRAMEWORK ASSET LIBRARY An asset library system whose search and under-
standing support is implemented using a software environment integration framework.

ASSET LIBRARY MECHANISM A software (sub)system that provides a logical capa-
bility for a library. A library mechanism requires tailoring and, possibly, extension to
become a library system instantiation.

STANDALONE ASSET LIBRARY An asset library system whose search and under-
standing support is implemented independently of a particular file system capability or
software environment integration framework.

TOOL (1) An independent software program that uses ALOAF services to accomplish some
specific task. (2) A program which provides the functionality of one or more ALOAF
services at the request of an ALOAF server or binding routine.

COMPONENT One of the parts that make up a software-intensive system. A component may
be hardware or software and may be subdivided into other components. A complete software
component includes both the object code and all related information that is needed to use it.
This related information includes parameterization information, source code if not proprietary,
test information, design information, evaluation results, and other descriptive information.

DATA MODEL The organizing principles and concepts underlying structured data, as in a
database. Also, the means of representing that structure.

DOMAIN An area of activity or knowledge. Domains have been characterized as application,
horizontal or vertical, technology, computer science, execution, execution models, etc.

DOMAIN ANALYSIS The process of identifying, collecting, organizing, analyzing, and repre-
senting a domain model and software architecture from the study of existing systems, under-
lying theory, emerging technology, and development histories within the domain of interest.

DOMAIN ENGINEERING The construction of components, methods, and tools and their
supporting documentation to solve the problems of system/subsystem development by the
application of the knowledge in the domain model and software architectures.

DOMAIN MODEL A definition of the functions, objects, data, requirements, relationships and
variations in a particular domain.

Page 68

22 November 91 STARS-TC-04041/001/00

DOMAIN-SPECIFIC LANGUAGE A machine processable language whose terms are derived
from the domain model and that is used for the definition of components or software archi-
tectures supporting that domain.

FRAMEWORK A skeletal structure to support or enclose something. The skeletal structure in
ALOAF reuse documents is a conceptual structure that delimits the concepts being discussed;
supports understanding and technical transition; and promotes evolution.

REUSE PROCESS FRAMEWORK The conceptual structure that categorizes and in-
terrelates reuse processes by their purposes, goals, and activity characterizations.

ASSET LIBRARY OPEN ARCHITECTURE FRAMEWORK The conceptual
structure that supports seamless interchange and interoperability among networked, dis-
tributed, heterogeneous asset libraries by defining a service model; protocols supporting
that model; Ada package specifications for the protocols; and a specification for asset
interchange.

INTEROPERABILITY The capability to perform common functions or processes across the
boundaries created by the connections between homogeneous and heterogeneous asset fi-
braries' host computers.

-- LIBRARY (see ASSET LIBRARY)

LIFE CYCLE All the activities a software or software-related product is subjected to from its
inception until it is no longer useful. Note that this definition shifts the usual definition of
life cycle, which is based on life of a system, to a more general concept covering the lifetime
of a software product.

PLUG-COMPATIBLE Usable in combination without modification.

META-MODEL A modeling technique used to develop a class of data models. A data model is
said to conform to a meta-model if it can be completely described by that meta-model. (Also
called META-DATA-MODEL.)

PORTABILITY The quality of a software product, tool, component, etc. that determines the
amount of manual effort needed to adapt it to a new operating environment. In particular,
the ability to move ALOAF tools and service frameworks from one asset library system to

another with no effort other than recompilation and relinking.

PROCESS A series of steps, actions, or activities to bring about a desired result.

SOFTWARE DEVELOPMENT PROCESS A process whose goal is the development
of software components or applications.

QUERY A request for identificatioiT of a set of assets or library data model elements, expressed
in terms of a set of criteria that the identified items must satisfy.

REUSE The transfer of expertise. In software engineering, reuse often refers to the transfer of
expertise encoded in software related work products. The simplest form of reuse from soft-
ware work products is the use of subroutine/subprogram libraries for string manipulations or
mathematic calculations. The simplest form of reuse of expertise not represented in software
work products is the employment of a human experienced in the desired endeavor.

Page 69

22 November 91 STARS-TC-0404 1/001/00

REUSE-BASED DEVELOPMENT The application of a disciplined, systematic, quantifiable
approach to the development, operation and maintenance of software with reuse as a primary
consideration in the approach.

SEAMLESS An operational mode where a user is able to perform reuse processes across any
boundaries of interoperating reuse systems without noticing any of the extra work done by
the asset library to maintain the communications between the heterogeneous libraries. Use
of a seamless interoperating asset library should be indistinguishable from the use of a local
asset library to which a user is directly connected.

SERVICES The functionality collectively provided by an asset library's framework that provide
reuse-oriented tools with the features they need.

SERVICE MODEL The categories and inter-relationships among reuse services that pro-
vide an organization (or at least the appearance of an organization) to other tool and
software developers.

SERVICE PROTOCOLS The syntax and semantics of how each service and the data it
provides and/or uses are employed by other services or tools.

SERVICE CATEGORIES A grouping of reuse services by common functionality, pur-
pose, and/or protocols.

PROGRAMMATIC INTERFACE A binding of a service protocol to the specific syntax
and semantics provided by a computer software programming language, such as Ada.

SOFTWARE ARCHITECTURE The high level design for a software system or subsystem.
Includes the description of each software component's functionality (or result), name, param-
eters and their types and a description of the components' interrelationships. Note that this
definition describes software architecture from a system point of view rather than a domain
point of view. Many different definitions of software architecture are currently in use, often
in the same sentence depending upon qualifiers such as "generic" or "domain-specific."

SOFTWARE ENGINEERING ENVIRONMENT (SEE) The computer hardware, operat-
ing system, tools, computer-hosted capabilities, and rules that an individual software engineer
works within to develop a software system.

SOFTWARE ENGINEERING ENVIRONMENT FRAMEWORK A set of capabilities
that integrate user interface, project data, network communications, and control of resources
in a coherent manner.

STANDARDS Acknowledged measures of comparison for quantitative or qualitative value.
ALOAF addresses itself to: formal standards, which have been fully adopted by appropriate
accredited national and/or international standards organizations such as ANSI and ISO; in-

work standards activities, which represent work by accredited and other organizations aimed
at creation or updating of formal standards (such as CDIF and IEEE P1175); and proposal
of new standards in areas not fully covered by formal and in-work standards.

Page 70

22 November 91 STARS-TC-04041/001 /00

B Acronyms

* ACL - Access Control List

* ADT - Abstract Data Type

* ALOAF - Asset Library Open Architecture Framework

* AMS - Asset Management System

* ANSI - American National Standards Institute

1 ASCII - American Standard Code for Information Interchange

* ASN.1 - Abstract Syntax Notation One

* ATIS - A Tools Integration Standard

* BNF - Backus-Naur Form

I * CALS - Computer-aided Acquisition and Logistics Support

* CASE - Computer-Aided Software Engineering

* CDIF - CASE Data Interchange Format

o CDM - Common Data Model

o CM - Configuration Management

1 a CMS - Code Management System

o CONOPS - Concept of Operation

-- COTS - Commercial Off-The-Shelf

o CPU - Central Processing Unit

o * DBMS - Data Base Management Sy.tem

o DoD - Department of Defense

U ECMA - European Computer Manufacturing Association

o EIA - Electronic Industries Association

o EIS - Engineering Information System

o sERA -Entity Relationship Attribute

o IEEE - Institute of Electrical and Electronic Engineers

3 o IRDS - Information Resource Dictionary System

* ISO - International Standards Organization

* ISEE - Integrated Software Engineering Environment

Page 71

22 November 91 STARS-TC-04041/001/00

* IV&V - Independent Validation and Verification

* OODBMS - Object Oriented Data Base Management System

a OMS - Object Management System

* OS - Operating System

* OSF - Open Software Foundation

3 PDL - Program Design Language

* PDSS - Post Deployment Support System

1 PCTE -Portable Common Tool Environment

. POSIX - Portable Operating System Interface for computer environments

* RCS - Revision Control System

* RIG - Reuse (library) Interoperability Group

* RDBMS - Relational Data Base Management System

* RLF - Reusability Library Framework

* RM - Reference Model

a SCCS - Source Code Control System

* SEE - Software Engineering Environment

U SGML - Standard Generalized Mark-up Language

3 * SQL - Structured Query Language

@ SSP - STARS Standards Portfolio

3 STL - Semantic Transfer Language

* STARS - Software Technology for Adaptable, Reliable Systems

* STEP - Standard for the Exchange of Product (Moe&l Data)

* TBD - To Be Determined

* UIMS - User Interface Management System

* VDM Vienna Design Method

Page 72

22 November 91 STARS-TC-04041/001/00

C Scenarios

This appendix will contain scenarios of reuse activities that show, through various views, how the
ALOAF services interact to support the activities.

Page 73

I
22 November 91 STARS-TC-0404 1/001/00

ID Asset Interchange Language Specification

IThis section describes the asset interchange language which will be used to support the short term
approach to asset interchange. This language is designed to represent the Common Data Model
and does not permit direct expression of the data model of the exporting library. Neither is this
language based on any existing data interchange standards. It is a simple, ad-hoc language to
provide a basic asset interchange capability.

BNF of the Asset Interchange Language

object-list ::= "begin" "object-list" { object } "end" "object-list"

object ::= asset I file I organization I person

object-attribute ::= unique-identifier

asset ::= "begin" "asset" f asset-attribute I "end" "asset"

asset-attribute object-attribute I
name I
alternate-name

1version I
release-date I
description I
restrictions-apply I
is-comprised-of I

is-acso~fdescendant-of I

requires I
is.requiredby I
was-.created.by I
is-understood-by

I file "begin" "file" { file-attribute I "end" "file"

file-attribute ::= object-attribute I
file-name I
comprises

I organization ::= "begin" "organization" {organization-attribute } "end"
"organization"

organization-attribute ::- object-attribute I
name I
alternate-name I
address I

IPage 74

22 November 91 STARS-TC-04041/001/00

telephone-number I
created

person ::= "begin" "person" { person-attribute } "end" "person"

person-attribute ::= object-attribute I
name I
address
telephone-number I
electronic.mail-address I
is-contact-for

address ::- "address" "=>" string-literal

alternate-name ::= "alternate-name" "=>" string-literal

comprises ::= "comprises" "=>" identifier

created ::= "created" "=>" identifier

description ::= "description" "=>" string-literal

electronic-mail-address ::= "electronic-mail-address" "=>" string-literal

file-name ::= "file-name" "=>" string-literal

is-ancestor-of = "is-ancestor-of" "=>" identifier

is-comprised-of "is-comprised-of" "=>" identifier

is-contact-for = "is-contact-for" "=>" identifier

is-descendant-of ::= "is-descendantof" "=>" identifier

is-required-by ::= "is.required.by" "=>" identifier

is-understood-by ::= "is-understoodby" "=>" identifier

name ::a "name" "=>" string-literal

release-date ::= "release-date" "1=>" string-literal

requires ::= "requires" "w>" identifier

restrictions.apply ::= "restrictions-apply" "=>" string-literal

telephone-number ::= "telephone-number" "v>" string-literal

Page 75

22 November 91 STARS-TC-04041/001/00

unique- identifier ::= "unique-identifier" "=>" identifier

version ::= "version" "=>" string-literal

was-created-by ::= "was-created-by" "=>" identifier

BNF Design Notes

a. The symbol string-literal differs from the usual Ada definition in that a string literal may
include format effectors such as a line feed or a carriage return. The symbol identifier has
the usual Ada definition.

b. The idea of using a modified form of the Ada language syntax for aggregates was considered
and rejected. The advantage of using the Ada aggregate syntax is that it is well-defined and
understood by the STARS audience. On the down side, the aggregate syntax is overkill for
the purpose at hand. The syntax given above is simple enough to be self-explanatory, and
satisfies our immediate needs.

c. We need to extend the syntax to include certain "header" information not specified by the
Common Data Model. For example: the date of export, an identification of the exporting
library (and its environment?), and perhaps the name of the person who initiated the export.

d. For our purposes, there was no need to instantiate the object class.

e. Since each object is clearly introduced with a begin class-name clause, there is no need to
incl-de a class-name attribute.

f. Since the symbol identifier is used to represent an Ada identifier, the identifier attribute
of the object class is referred to by the symbol unique- identifier.

g. Certain rules that can be enforced in the syntax of the language have been postponed to the
semantic level. In particular, the syntax definition given above says nothing about whether
an attribute is mandatory or optional, or whether a given attribute can be repeated withinIa single object. These rules could have been enforced in the BNF by requiring that the
attributes for each object class be given in a certain order, with each attribute specified as
mandatory or optional. Because such a syntax would be unnecessarily clumsy, these rulesIshould be enforced at a higher level.

I
I
I
i Page 76

I
22 November 91 STARS-TC-04041/001/00

I E Ada Bindings for ALOAF Services

I This appendix will contain the Ada bindings to the language independent specifications for the
ALOAF services defined in section 8.

I
I
I
I
I
I

I
I
IPge7

